
Session Initiation Protocol

KKTan and HL Goh

Department of Electrical and Computer Engineering,
National University of Singapore

4, Engineering Drive 3, Singapore I17576

Abstract
Session Initiation Protocol (SIP) is a new and emerging
protocol that is used to establish and release the connmsction
between two end systems. It is used in preference to the older
H323 protocol. Both protocols provide a similar set of services
hut SIP is much simpler because it has less logical components.
This paper describes the implementation of a VoIP application-
using SIP as the handshaking protocol. The implementation of
the SIP is performed with the aid of
Libsip++ library from Columbia University. The audio signal is
transmitted via the Microsoft’s windows API. The Vo IPsystem
was created using Delphi 5.0. As the Lipsip++ was created
using Microsoft’s C++ 6.0, some incompatibility problem arises.
There will be a section discussing these problems and it’s
solution. The VoIP system consists of a SIP server and two
user gent. The SIP server is linked to a HTTP sene r to
facilitate the update of user configuration via Internet. This
paper will also introduce a new function called chatboard that
will facilitate users with speech handicap.
Keywords: SIP, H.323, VoIP, IP, HrTP, Tcl, TCPilP

1. m O D U C T I O N

Intemet Protocol or IP is rapidly gaining ground as an
altemative to the traditional audio and video transport methods
used for telephony today. Voice over IP or VolP has emerged
as the tag line for transmission of voice or video over IP-based
data networks. In addition, the world of VolP promises to take
users beyond the telephone call oftaday by adding multimedia
conference calling, personal mobility, World Wide Web based
click to call and other such advanced applications. The XTU-T
H.323 protocol suite is the dominant VoIP protocol suite as
measured by the number of commercially available products.
The H.323 protocol suite is also the dominant VolP protocol
suite as measured by the size and complexity of the
specifications. The use of H.323 results in a steep learning
curve, high cost of implementation, high connection setup
latency, and difficulty in achieving interoperabiliiy in
heterogeneous networks. Although the ITU-T H.323 protocol
suite currently dominates the VoIP world, there exists a
lightweight contender for call signaling that avoids all the
complexity, high connection setup latency, and implementation
difficulties of H.323. The Session Initiation Protocol or SIP
brings simplicity, familiarity, and clarity of purpose to IP
telephony that Internet s a w y network professionals will
appreciate. SIP-based products are on the market now and more
are under development.Currently, Microsoft’s new operating
system, XP, will ship with a SIP User Agent, and the company’s
ne* generation of instant messaging clients will also be based
on SIP. Been the most widely used operating system;

Microsoft decision to use SIP will ensure its proliferation in
VOIP.

This paper will serve to provide a foundation on how a SIP
based VoIP system can be created.

2. SIPARCHITECWRE

SIP provides the basic elements of telephony: call setup and
termination, call configuration, and data transfer. This is
accomplished using SIP for call setup and termination portion,
SDP to describe call configuration, and RTP for data transfer.
RTCP is also used for data stream management. SIP can run
over any datagram or stream protocol such as UDP, TCP,
ATM, and frame relay. SIP is commonly run over TCPIIP
because of inexpensive widespread connectivity, directory
services, naming services, and a widely known development
environment. The audio and video data streams are transported
using the Real-time Transport Protocol (RW) over UDP. SIP
call signaling messages can be carried over UDP or TCP, with
UDP being the preferred method because of its better
performance and scalability. One important consideration when
using SIP over UDP is that the entire message should fit within
a single packet. If a SIP message is fragmented into multiple
datagram, the probability of losing the entire message
increases with the number o f fragments. When SIP messages
are being transmitted over a WAN, the retransmissions that
result due to lost fragments can seriously degrade call-
signaling performance. The default port for SIP is 5060
although any available user port may he used. The port to be
used for RTPIRTCP is specified in SIP call signaling messages.
Figure 1 shows SIP over TCPIIP.

I
M h aM Physieel bpm

Fig. 1 Communication Layer

3. LIBSIP++ INTEGRATION
There are several interaction problems linked to the re use of
component. Major problems arise from the fact that the main
program for the VoIP application was developed in Borland
complier, while the Libsip++ was developed in Microsoft visual
c++. The object and module format generated in visual c + k is
different from the format used by Borland complier. Below will
elaborate these problems.

0-7803-7657-9/02/$I7.00 Q 2002 IEEE 1310 IEEE ICIT’02, Bangkok, THAILAND

3.L.Coff andOMF
Until the first Microsoft Win32 programming tools appeared,
almost all compilers produced OBJ files in the Intel OMF
format. The original Windows worked with an object module
format known as Common Object File Format (COFF), which is
the official machine-code format for UNIX System V. COFF is
relatively easy to work with. COFF format OBJs also have the
advantage of being much closer in format to Portable
Executable files, the native executable format for Win32. A
COFF-format linker should have much less work to create an
EXE or DLL from a COFF file than from an Intel OMF-format
file.

Additional information in special records of the LIB tile lets the
linker quickly. Borland use OMF-style OBJs and LIBs, while
Microsops 32-bit compilers produce COFF-format OBJs and
LIBs.

Borlanss TLINK refuses to work with COFF-format OBJor LIB
files. This result in problems when try to load the Libsiptk
library into Delphi 5.0.

3.2 -St dcall and -Cdecl
Borland and Microsoft also disagree on linker naming
conventions. Every function in a DLL or OBJ has a linker name.
The linker uses the linker name to resolve functions that were
prototyped during compile time. The linker will generate an
unresolved external error if it can't find a function with a linker
name that it thinks is needed by the program.

With regard to linker function names, Borland and Microsoft
disagree on these points:
1. Visual C++ sometimes decorates exported -stdcall

2 . Borland expects imported -cdecl functions to be

For example a DLL created with Visual C+t that contains a
- stdcall function called MyFunction(), Visual C+t will give
the function a linker name that looks like _MyFunction@d
When the Borland linker tries to resolve calls made to this
function, it expects to find a function with the name
MyFunction. Since the import l i b r w for the
Visual C H DLL doesn't contain a function called MyFunction,
the Borland linker reports an nnre solved external, which means
it couldn't find the function.

3.3 Wrapper
To solve the format incompatible problem, 2 utility functions
IMPLIB and TDUMP in the Borland C++ builder 6 to create was
used to create a wrapper that can provide a common interface
between the Libsip++ component and the rest of the program.

functions.

decorated.

4. M S M I T I W G AUDIO SIGNAL
After the SIP user agents complete the handshaking
negotiation using SIP protocol, the mer agent will then be
ready to transmit the audio signal. The recording and play back
of audio signal is performed using windows audio DLL. The
user agent is able to transmit the audio signal in a duplex
manner this is made possible by multGthreading.

To record the audio signal from the microphone and play back
the audio signal received some DLLs that are inherent in the
Microsoft operating system was used. In the windows 98,
multimedia-related services can be found from the
WINMM.DLL. In the Delphi, the RTL unit named MMSYSTEM
is the key. For example, to open an output device, the
Waveoutopen function will be called; to open an input device,
Wavehopen function will be called.
To play audio, the first thing is to open a handle to the output
device desired (just as a file must be opened before it can be
accessed). For output, it is really not important which device is
the hest (the user's computer can have several sound device
installed).

Playing a buffer of the audio is done using the waveoutwrite
function. The format of the buffer used in the program is a plain
and simple PCM. Before getting a buffer playing with
waveoutwrite a few things need to be done. First, a header
structure needs to he set up. The header describes the location
of the buffer storing the actual audio data, as well as how many
times it should be looped. After the header has been set up, the
audio driver is instructed to stand by for the data. This is done
with the waveoutprepareheader function.

After Header preparation, the buffer is ready for playing. Aftcr
it has finished playing, the header must be unprepared. With
the header preparation and un-prepare requirements, audio
playing is actually a repetition of the three calls: prepare, write,
and unprepared.

The exchange of audio &ta between the h e r agents is
through the TCPiIP layer. This can be performed easily in
Delphi. Using the TTCP control found on the Internet page of
the component palette. The code calls the Listen method and
waits for the Connection Request event. In the event handler
for the Data Arrival event is set. Calling the listen method
should put the component in the listening state for new
connections. However, if the state property is not queried
before doing this, comections are simply refused.

The Data Anival event is the most important -and the most
difficult event to handle. This event handler reads the data from
the TCP connection into an Olevariant, and then stores the raw
binary data in either of the two output buffers created using
Tthread class. The threaded buffer will then play one at a time,

The IMPLIB utility was used to create the import lib of the
libsip++ objects. After that TDUMP.exe is then employed to
obtained the structure and the convention used in the
Libsip++. Using the IMPORT and EXPORT command, a
wrapper interface that can translate the conventions used in
the libsip++ to be Borland compliance was created.

using the default audio output device set up using Windows
Panel

5. SIPSERVER
A SIP proxy server that receives a SIP request from a user
agent acts on behalf of the user agent in forwarding or
responding to the request. A proxy server typically has access
to a database or a location service to aid it in processing the

1311 IEEE ICIT'OZ, Bangkok, THAILAND

request (determining the next hop). The interface between the
proxy and the location service is not defined by th': SIP
protocol. A proxy can use any number of types of databases to
aid in processing a request. Databases could contain SIP
registrations, or any other type of information about where a
user is located. A proxy server is different from a user agent or
gateway in two key ways:
1. A proxy server does not issue a request; it only responds to
requests from a user agent. (A Cancel request is the only
exception to this rule.)

2. A proxy server has no media capabilities.

The figure 2 below shows the role of a SIP proxy server in a
transaction.

-. -. . . . ~"?.**iwYv:=. . ~. . I. - - . L . . . 1 ,..I$ 'j
.2-*v?A==_ ___--_

l.%-LP*Jr- - - -- . -
Fig 2 SIP operations with PNXY

5.1 SIP Sewer Implementation

A SIP server with the capability to serve as a proxy server Ibr
an incoming request call was created. Upon the received ol'an
incoming request it will look up in the database for the
identification of the callee. Depending on the policy set by the
callee, the sewer will react accordingly. If the callee had set the
policy to reject all call or did not leave a contactable address,
the caller will received a message that the calleeis not available.
On the other hand if the callee set the policy of accepting all
call the caller is automatically connected to the callee terminal.
The SeNCr that was created is a stateful one, at anytime the
administrators are able to check the transaction that had been
made via the server. In order, to allow the user to change th,zir
configuration easily, a HTTP server was implemented to handle
all the changing of the configuration through FORM.

5.2 H"F'F0RM

The FORM is created using Tool command Language (Tcl)
rather than the conventional scripting language like ASP and
JavaScript. The main advantage for doing so is the portability
of TCL, it can run on platforms as varied as VAXen and Macs,
as well as almost all flavors of Unix. It also allows for its library
to be extended by the programmer, either in C or in Tcl. This
will allow porting of the HTTP system to a Linux operaling
system (OS) if necessary (presently Windows NT was used as
the OS for the HTTP server). Tcl's simple structure of
"command agument" and strong string and list processing
capabilities make it easy to perform complex parsing operations

and string manipulation that is often encountered in HTTP
FORM.

b. CHATBOARD

.r ~j ,.-

Fig 3 Chatboard

The figure 3 above show the VoIP application \rith chatboard
function activated. There arc two main reasons for this
additional feature. One of the reasons is to provide a form of
communication for people who had speech handicap. For user
who is unable to speak, he can activate the chatboard, which
function like an lntemet Relay Chat (IRC). Upon the activation
of the chatboard the audio communication will be suspended,
the user will then key in the message they wish to convey on
the chathoard. The message will be transmitted to the other end
in the form of text string. At the receiving end, a text to speech
procedure will be perform on the received text string to convert
the text to a computerize speech. To relief the user from the
chore of typing, the chatboard contain speech recognition
ability. When the speech recognition is on, the user just need
to speak into the microphone and text will appear on the
chatboard.

The second reason for having the chatboard is that it can be
used when the Internet traffic is heavy and the Quality of
sound of the transmitted audio is affected. As the audio packet
is large, in the event of heavy Intemet traffic the audio stream
maybe delayed or jitter may appear in the transmission. The
using of chatboard on the other hand require much less
bandwidth and the transmission of text will remain
instantaneous, this is due to the small packet size of the text
string. With the text -To-speech function there will not be much
difference in term of user experience as compare to audio
communication.

Figure 4 show the actions carried out by the Callee when there
is an incoming call. Appropriate SIP responses will be sent via
a DLL created using Libsip++ and once the call is established,
audio transmission will be carried out. The user will be given a
choice of whether to carry the communication using the default
audio mode or change to chatboard.

1312 IEEE ICIT'02, Bangkok, THAILAND

Medla Set up audi
chalbaard inadv

+ use audio Media eshMisM
remains

Fig 4 Callee flowchart

1313 IEEE ICIT'OZ, Bangkok, THAILAND

7. CONCLUSION

IP telephony is becoming the new leader in the telephony
world. Day by day the number of companies interested in IP
telephony is continuously increasing and new attractive
services are in progress. Users demand new facilities and
services that musl be provided by the companies using the
best tools to achieve their objectives. One of the wa.ys to
improve the ease of development of IP telephony application is
to use a simpler handshaking protocol.

With the beginning of the new millennium, the digital industry
becomes more and more integrated; it is common for two
seemingly unrelated technologies to be combining into ,a new
innovation. This serves to be a motivation for future work.

Integration of VolP, Speech recognition with Bluetooth will
provide a new way for people to remotely control their home
appliances. In the future, air-conditioner can be switched, oven
can be turned on simply by calling home. And this future is not
far, with the SIP architecture ready; we are now in the position
to create a VolP system that is connected to the I?ublic
Switched Network (PSTN). And with a SlPiPSTN gal.eway,
analog audio voice can be digitized and transmit the audio
signal to the Bluetooth’s controller at home. The Bluetooth’s
controller will in turn perform a speech recognition procedure
on the received audio and then execute the command to turn in
the appliances accordingly.

Hopefully, this paper is able to provide an idea on how to
implements a SIP based VoIP application and also some idea on
future SIP work.

8. ACKNOWLEDGMENT

I would like to take this opportunity to thank Prof Tan Kok
Kiong and Dr Loh Wai Lung for giving me the chance to work
on this project. I would also like to thank the people of
Mechatronic and Automation laboratory who have lent help
and support to this project.

1 am grateful to Columbia University, NY, for granting the
permission to use the SIP library in this project.

REFERENCES

[I] Danji Yakimovich,James M.Bieman,Victor R.Basili “Sofhvare
architecture classification for estimating the cost of COTS
integration” Page297Page299 (1999).

[2] Ian Sommervile, “Software Engineering”, Addison-Wedey,
2001

[3] Alan B Johnston “Understanding the Session Initiation
Protocol”, Artech House, Boston, (2000).

[4] M. Handley, H. Schulzrinne, E. Schooler and J. Rosenberg,
“SIP Session Initiation Protocol,” Request for Comments 2543,
Internet Engineering TaskForce, Mar. 1999.

[5] J. Rosenberg and H. Schulzrinne, “The Session Initiation
Protocol: Providing Advanced Telephony Services across the
Internet,” Bell Labs Technical Journal, Vol. 3, No. 4, OctlDec.
1998, pp. 144-160.

[6] Don Libes “Writing CGI scripts in Tcl’ (1987)

[7] J. Lennox, J. Rosenberg and H. Schulzrinne, “Common
Gateway Interface
for SIP,” Internet Draft, Internet Engineering Task Force, May
1999.

1314 IEEE ICIT’OZ, Bangkok, THAILAND

