
mmdump: A Tool for Monitoring
Internet Multimedia Traffic

Jacobus van der Merwe
�
, Ramón Cáceres

�
, Yang-hua Chu

�
, and Cormac Sreenan

�

�
AT&T Labs - Research

�
Carnegie Mellon University

�
University College Cork

Florham Park, NJ, USA Pittsburgh, PA, USA Cork, Ireland
�
kobus,ramon � @research.att.com yhchu@cs.cmu.edu cjs@cs.ucc.ie

Abstract—
Internet multimedia traffic is increasing as applications

like streaming media and packet telephony grow in popular-
ity. It is important to monitor the volume and characteristics
of this traffic, particularly because its behavior in the face of
network congestion differs from that of the currently domi-
nant TCP traffic. In order to monitor traffic on a high-speed
link for extended periods, it is not practical to blindly cap-
ture all packets that traverse the link. We present mmdump,
a tool that parses messages from RTSP, H.323 and similar
multimedia session control protocols to set up and tear down
packet filters as needed to gather traces of multimedia ses-
sions. Dynamic packet filters are necessary because these
protocols dynamically negotiate TCP and UDP port num-
bers to carry the media content, so that we cannot rely on
well known port numbers as we have for more traditional
traffic types. Our tool captures only packets of interest for
optional storage and further analysis, thus greatly reducing
resource requirements. This paper presents the design and
implementation of mmdump and demonstrates its utility in
monitoring live RTSP and H.323 traffic on a commercial IP
network.

I. INTRODUCTION

Recent years have seen increasing use of the Internet
to send and receive audio and video, including streaming
playback of music and news, as well as real-time voice
telephony and conferencing. This traffic is expected to
continue growing, driven by improvements in PC perfor-
mance, residential access bandwidth, and media coding al-
gorithms. Whilst the trends and behavior of Web traffic
have been studied extensively, multimedia traffic has yet to
be studied in detail. Multimedia applications typically use
UDP transport, demand relatively large and constant data
rates, and react slowly, if at all, to network congestion. As
this traffic grows, its impact on network performance may
be significant. It is important for network designers to un-
derstand the nature of multimedia traffic.

Internet traffic measurements are commonly performed

Contact author: Jacobus van der Merwe, AT&T Labs - Research, 180
Park Avenue, Florham Park, NJ 07932, USA, kobus@research.att.com.

using the tcpdump utility, which can be used to monitor
packets for a particular protocol by filtering based on the
appropriate TCP/UDP port number. Use of tcpdump for
multimedia traffic is complicated because the majority of
multimedia applications use dynamically assigned UDP
port numbers. For example, protocols such as the Real
Time Streaming Protocol (RTSP) [1], the Session Initia-
tion Protocol (SIP) [2], and H.323 [3] use a well known
TCP port number for control traffic but typically use dy-
namically negotiated port numbers for the actual media
traffic. To address this problem we have created a new util-
ity we call mmdump that is based on tcpdump but makes
use of protocol-specific parsing modules to determine the
set of ports that need to be monitored.

In this paper we present the design and implementa-
tion of mmdump. mmdump contains a parsing module for
each multimedia control protocol. All traffic received on
the well known control port is passed to the parsing mod-
ule in question. The parsing module identifies individ-
ual control sessions in this aggregate control stream, and
parses the control messages to extract the dynamically as-
signed port numbers. The parsing module then dynami-
cally changes the packet filter to allow packets associated
with these ports to be captured. The need first to associate
arriving packets with multimedia sessions, and later to re-
port statistics on completed sessions, requires mmdump to
maintain per-session state. This is a significant departure
from the stateless operation of tcpdump. The situation is
made worse by the fact that control messages may suf-
fer loss, duplication, fragmentation, and reordering as they
travel through the network. We present our approach to
these problems in the current implementation of mmdump
and suggest improved approaches.

We also present results obtained using mmdump to mon-
itor multimedia traffic in WorldNet, AT&T’s commercial
IP network. The version of mmdump used included RTSP
and H.323 parsing modules and we are currently devel-
oping a SIP parser. The varied types of analysis that we
present for traffic from different multimedia control proto-

2

cols highlight the versatility of mmdump.
The rest of this paper is organized as follows. Sec-

tion II provides background on tcpdump as well as RTSP
and H.323. Section III explains the structure and opera-
tion of mmdump. Sections IV-A and IV-B present results
demonstrating the use of mmdump on live multimedia traf-
fic. Section V summarizes related work, and Section VI
concludes the paper.

II. BACKGROUND INFORMATION

Given that mmdump is based on and extends tcpdump,
we give a brief overview of tcpdump in this section. Two
example multimedia control protocols that are used to ne-
gotiate port numbers for streaming content are also briefly
discussed. We have implemented mmdump parsing mod-
ules for both these protocols and show the protocol inter-
action and the messages that contain negotiated port num-
bers.

A. Structure of tcpdump

The tcpdump utility provides a popular mechanism for
monitoring packet transmissions. tcpdump builds on top
of the libpcap library, which provides two key functions:
an abstraction for dealing with different types of network
interfaces, and the ability to compile a filter expression for
use by a packet filter. The library provides a common inter-
face to different ways of performing packet filtering. For
example, on a system with the BSD Packet Filter (BPF)
[4], filtering is done in kernel space and libpcap simply
passes the compiled filter expression to the kernel. libpcap
can also perform the packet filtering itself (in user space)
when required. This is used on systems where the ker-
nel does not support packet filtering, and when tcpdump
is reading packets from a previously generated raw dump
file, rather than directly from the network. Figure 3 illus-
trates the architecture of tcpdump as well as the mmdump
additions which will be discussed in Section III.

In normal operation, tcpdump is run with a command
line expression indicating all packets of interest. The
grammar and syntax used for this command line expres-
sion is fairly high level so as to be easily understood.
For example, the expression, host 135.207.26.201
and tcp port 554, indicates an interest in all TCP
packets using port 554 that are either originating from or
going to the host with the specified IP address. This com-
mand line expression is passed to the libpcap library at
startup where it is compiled into an intermediary tree struc-
ture. An optimization process is performed on the tree
structure and the resulting optimized tree is then translated
into a contiguous filter expression which is installed in the
operational packet filter.

For tcpdump, all packets that pass through the installed
filter will either be logged to file, or be passed to a print-
ing module in the tcpdump part of the code. In the latter
case, print functions for successively higher layers of the
protocol stack typically print out parts of the packet. For
example, for a UDP packet carrying a Sun RPC request,
the print-ethernet function will call print-ip, which in turn
will call print-udp and then print-sunrpc. For a more de-
tailed discussion of tcpdump please refer to [5], [6], [7].

While extremely popular and successful as a monitoring
tool, tcpdump in unable to efficiently monitor multime-
dia traffic, since the majority of multimedia applications
use dynamically assigned UDP or TCP port numbers for
media transfer. This is the case with popular multimedia
protocols such as RTSP and H.323, in which a control in-
teraction using a well known port is used to negotiate the
set of dynamic port numbers to be used for media trans-
fers. By their nature, dynamically assigned port numbers
cannot be specified from the command line, meaning that
tcpdump in its current form cannot be used to monitor this
type of traffic. If a given multimedia protocol normally
picks a port from a small range of port numbers, it is of
course possible to statically specify the whole range from
the command line and perform post-processing to extract
the data of interest. As we will discuss in Section IV-A, us-
ing tcpdump in this manner is very inefficient in terms of
disk space requirements of dump files and does not scale
to processing packets on a high capacity network link.

B. Multimedia Control Protocols

B.1 Real Time Streaming Protocol (RTSP)

OPTIONS

DESCRIBE

serverclient

control

data
TEARDOWN

PLAY

SETUP port numbers
Contains dynamic

Fig. 1. Dynamic port number assignment with RTSP

The Real Time Streaming Protocol (RTSP) is becoming
the dominant control protocol for streaming content on the

3

Internet. Figure 1 depicts a sample interaction between an
RTSP client and server. RTSP is used to set up and con-
trol (pause, forward, etc.) the playback of streaming con-
tent across the Internet. RTSP is a classic request-response
protocol, but also allows pipelining of messages to reduce
latency. Protocol interaction starts with an OPTIONS re-
quest/response whereby the client and server establish mu-
tual capabilities. The client then issues a DESCRIBE re-
quest for the media stream it is interested in. The response
from the server contains media specific information about
the stream, e.g. the encoding used, the clip length and
the average bit rate. Depending on the particular session,
more than one media stream might be described in a sin-
gle DESCRIBE response message. After DESCRIBE, the
client issues a SETUP request which contains the set of
protocols and port numbers (or range of port numbers) on
which the client is willing to the receive the media stream.
For RTSP this is normally UDP and a dynamically cho-
sen port number, although it is also possible to use RTSP
in “interleaved mode” where the data stream is interleaved
on the original TCP control connection. This is typically
only used to allow streaming through a firewall. The server
selects one of these options and a port number and send it
back to the client in the response message. Following these
exchanges the client can issue a PLAY request to start the
streaming and can issue PAUSE and other control request
for the stream. The session normally ends with a TEAR-
DOWN requests at which time the TCP connection is also
terminated1.

C. H.323 conferencing control protocols

Conferencing and packet telephony are other multime-
dia applications that make use of a separate control proto-
col to dynamically negotiate port numbers for media trans-
fer. Figure 2, depicts a sample H.323 exchange between
caller and callee. Interaction starts with the caller send-
ing a SETUP message on a well known TCP port to the
callee. This exchange is on the first of two TCP connec-
tions which is called the Q.931 channel. The callee re-
sponds with an ALERTING message followed by a CON-
NECT message. The CONNECT message contains the
port number for the second TCP connection between caller
and callee which is called the H.245 or conference control
channel. At this point the first TCP connection may be dis-
connected. Interaction on the H.245 channel starts with an
exchange of messages to determine terminal capabilities

�

This summary of the RTSP protocol reflects our monitoring of its
usage in practice. It is compliant with the RTSP specification, but the
specification allows several variations, for example the use of UDP as
the transport mechanism for RTSP and the tearing down of the RTSP
control connection without terminating the RTSP session.

and for determining the master and slave roles between
the two terminals. The sender (of subsequent media) then
sends an Open Logical Channel message to the receiver. In
the Internet environment this message contains the RTCP
port number on which the sender wants to receive RTCP
reports about the quality of reception [8]. The receiver re-
sponds with an Ack message which contains the RTP port
number on which the media stream should be received and
an RTCP port number on which to receive RTCP sender
reports. The Open Logical Channel message always origi-
nates from the sender of a data. As indicated in Figure 2 a
two way conversation will therefor require an Open Logi-
cal Channel and Ack pair of messages in both directions.
The second TCP connection remains connected for the du-
ration of the call and terminates after sending an End Ses-
sion message.

data

control

Contains port nos
for media stream

H.245 channel
(on dynamic TCP port no)

Terminal capability
messages

connection
for second TCP
Contains port no

caller

(on well known TCP port)
Q.931 channel

CONNECT

ALERTING

SETUP

callee caller

Master/slave determination

Open Logical Channel

Ack

Open Logical Channel

Ack

End Session

callee

Fig. 2. Dynamic port number assignment with H.323

III. DESIGN, IMPLEMENTATION AND OPERATION OF

mmdump

mmdump extends tcpdump by adding parsing modules
for multimedia session control protocols and by allowing
these parsers to dynamically change the packet filter to ac-
cept packets on the dynamically assigned port numbers.
As per the normal functioning of tcpdump, packets that
pass through the filter can be displayed by means of pro-
tocol specific print modules, or can be logged to a file for
post processing. This arrangement is depicted in Figure 3
and discussed in more detail in this section. We have im-
plemented parsing modules for both RTSP and H.323 and
describe these below.

When gathering lengthy traces on high-speed links, mm-
dump is commonly used in two stages. During the first

4

������
tcpdump

libpcap

������

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

mmdump

������������

	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������

������������

����������������������������

��

��

���������������
���������������
���������������
���������������
���������������
���������������

�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������

�������������������������
�������������������������
�������������������������
�������������������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������

Logging

PRINTERS

TCP

From network

Change packet filter

PARSERS

RTSP H.323

Packet Filtering

UDP

Fig. 3. Architecture of mmdump in relation to tcpdump

stage, only the messages containing dynamically assigned
port numbers are parsed, the packet filter is updated and all
packets that pass through the filter is dumped into a file for
later analysis (this includes all control packets and all data
packets). In this mode of operation the parsing modules
are only concerned with messages containing the dynami-
cally assigned port numbers. Raw dump files generated in
this manner can be post processed again using mmdump.
In these cases the parsing module might extract informa-
tion from other messages, e.g. in the case of RTSP the
URL of media objects, the type of encoding used and the
length of objects might be of interest. It is also possible
to use mmdump in a one stage process whereby all infor-
mation of interest is extracted online and no packets are
logged.

A. Structure of mmdump

The multimedia control protocols make use of well-
known port numbers. When started, mmdump sets up a
default filter to capture all packets that belong to these
control connections to bootstrap the monitoring process.
This filter is set up to receive all packets for all connections
traversing the probe point that mmdump is monitoring.

For each of the multimedia applications of interest a
parsing module has to be supplied. All packets that ar-
rive on a particular well-known port number are passed to
the corresponding parsing module for processing. Figure 4
shows the functionality that each parsing module need to
supply.

mmdump maintains state for each active “session” so as
shown in Figure 4, the first action required by a parsing
module is to do a session lookup. A session is defined as
a unique instance of a control protocol interaction, e.g. an

RTSP client communicating with a RTSP server, or two
H.323 peers communicating. A session lookup therefore
involves a matching of source and destination addresses
and port numbers in the received packet against the equiv-
alent values in the stored session state. For H.323, the sec-
ond TCP control connection (the H.245 connection), has to
be associated with the first control connection (the Q.931
connection). In this case, the session lookup therefore has
to match the incoming packet against both these control
connections associated with the same session. While the
basic session lookup is fairly generic, i.e. matching IP ad-
dresses and port numbers, protocol specific variations such
as the aforementioned, makes it difficult to efficiently sep-
arate this functionality out in a generic way. If the session
lookup was successful the retrieved sesion state is used, or
if it failed, a new session structure is allocated.

Maintaining state in the tool is a significant departure
from the the stateless operation of tcpdump. As indicated
above new session state can be created when the first TCP
packet for a particular session is received. Session state
can be removed when the TCP FIN packet is received on
the control connection for RTSP, and on the H.245 con-
nection for H.323. Depending on the mmdump mode of
operation, a summary of session information will typically
be produced when session state is removed.

Next mmdump has to determine if a complete higher
layer protocol message has been received. This function is
by necessity protocol specific. RTSP, which is a text based
protocol, employs a fairly complicated set of rules to de-
termine how the end of a message is indicated. An H.323
control messages on the other hand is encapsulated in a
lower level frame which has a message length field. If a
complete control protocol message has been received, the

5

Session
Lookup

Existing
Session ?

Create New
 Session

Find Message
 Boundaries

Complete
 Message ?

Store Partial
Message With
Session State

 Parse Message
 &
Store Session Info

Found New
 Ports ?

Change Filter

Garbage Collect ?

Garbage Collection

Message
Received

Return

Return

N

Y

N

Y

N

Y

N

Y

Fig. 4. Functioning of a paring module

message is passed to a parsing engine, if not, the packet
is stored in a per-session buffer to be used together with
subsequent packets received for this session. The current
implementation of this per packet buffer does not take TCP
sequence numbers into account and simply treats packets
in the order in which they were received. This is clearly
problematic in an IP environment where both packet reo-
redring and packet loss can happen. Especially for RTSP
traffic where different RTSP messages often span several
IP packets, or have fragments of different RTSP messages
in the same IP packet. For H.323, control messages seem
to be contained in one (or two) IP packets, with a single
H.323 message per packet. Since both control protocols in
question (and indeed others that are of interest) make use
of TCP, it should be possible to extend the implementation
with a generic TCP module, which could pass to the pars-
ing modules only a correct ordered sequence TCP packets.
We are currently investigating this possibility.

The protocol-specific parsing engine tries to parse the
message passed to it, putting extracted information in a
session structure supplied by the parsing module proper.
This separation of functionality allows a diffent parsing
engine to be used without the need to change any of the
mmdump logic and functionality2. At the very least the

�

For example, a new H.323 library, capable of parsing the FastCon-

parsing engine will try to determine any dynamically ne-
gotiated port numbers. Depending on the way the tool is
use (i.e. one-step online, or two-step online and offline),
the parsing engine also extract other information from the
control protocol. Should the parsing engine fail to cor-
rectly parse a message that was believed to be intact, may
be because of the simple reassembly described above, the
message is simply discarded.

If the parsing engine were able to extract any negotiated
port numbers, this fact is relayed back to the main parsing
function by means of a flag in the shared session struc-
ture. The parsing module can now invoke new functions
exported by the libpcap library to dynamically change the
filter expression so that packets associated with this port
number can also pass through the packet filter.

The interface between the parsers and the packet
filter level is very simple and consists of two func-
tion calls: change-filter() and do-filter().
change-filter allows a parser to either add or delete
a port number for a particular address and protocol type to
the filter expression. Alternatively a parser can request that
all ports associated with a particular address be deleted.
Calling change-filter() does not result in the im-
mediate update of the real packet filter, rather the requested
change is noted at the packet filter level, and when a pars-
ing module calls do-filter(), the actual filter change
takes place. This allows the parsing module to make a
number of related changes to the packet filter in one go,
for example to add both and RTP and an RTCP port num-
ber to a specific address. This is desireable, because as
explained below, the actual generation of a new packet fil-
ter is currently an expensive operation which should not be
performed unnecessarily.

As explained in Section II-A, for regular tcpdump a
command-line filter expression is compiled once (using
the function pcap-compile()), into an intermediate
tree structure which is then optimized to produce a con-
tiguous filter expression in a form which can be installed
in a packet filter state machine. In our initial proof of
concept implementation, we made use of this same inter-
face by producing a long ASCII filter expression for input
to pcap-compile() every time that do-filter()
was called. Generating the intermediate tree structure is
however a very expensive operation and this approach was
therefore very inefficient.

In our current implementation we therefore exploit the
fact that the filter expressions that we generate always fol-
low a very simple pattern, to bypass the generic standard
compilation process. In particular, a command-line ver-

nect option in the latest version of the specification was recently added
to mmdump for monitoring voice traffic in a voice over IP trial.

6

sion of the filter expression used by mmdump will always
be of the following nature: tcp port X or (host
A and port A1 or host A and port A2) or
(host B and port B1) etc. We therefore gener-
ate the intermediate tree structure directly in a mechanical
fashion by simply walking through the list of current en-
tries in the filter table and AND’ing or OR’ing the building
blocks of the tree structure together as needed. As before
this intermediate tree structure is then optimized (though a
new simple-pcap-compile() function) and turned
into a contiguous filter expression for the actual packet fil-
ter.

While much more efficient than our initial attempt, the
optimization process still needs to be run (for the com-
plete filter expression) every time a parsing module calls
do-filter(). A more optimal solution of keeping the
intermediate tree structure which can be added and deleted
to based on instructions from the parsers is not possible
with the current libpacp implementation as the intermedi-
ate tree structure is “consumed” in the optimization pro-
cess. However, recently work has been undertaken on a
new version of the tcpdump family of tools [7] and the
requirement of mmdump (and indeed other meaurement
work) for dynamic and incremental filter will hopefully re-
sult in this functionality being added to the libpcap library.

Returning to Figure 4 the final function that a parsing
module might have to perform before it returns is garbage
collection. As described above, session state is normally
removed when a TCP FIN message is received for the
control connection. However, because of effects such as
packet losses or route changes, the probe point might never
receive the FIN packet and garbage collection has to be
performed to remove stale session state. In our current im-
plementation, garbage collection is performed when trig-
gered by some “scarcity” of resources such as the num-
ber of sessions reaching a certain theshhold. Similarly,
in the absense of more accurate information, sessions are
deemed stale when their duration exceed a certain thresh-
hold, or when they have not seen any activity on all the
streaming ports for a certain period of time. The latter
approach, while being more accurate, is also a lot more
expensive as it means that a session lookup has to be per-
formed for every (or every nth) data packet.

B. Using mmdump

Selection of a particular multimedia protocol to mon-
itor is by a command-line option: -R n for RTSP and
-H n for H.323, where n is a small number controlling
the amount of online processing and the verbosity of the
output that mmdump produces. For example, -H 0, will
do the minimal amount of online extraction of informa-

tion and is often used in conjunction with the raw-write
tcpdump option (-w <filename>) when mmdump is
used in a two stage process. -H 1 causes mmdump to
perform online extraction of protocol specific information
and can be used either online or offline, the latter typically
with the tcpdump raw-read option (-r <filename>).
With n>0, mmdump produces session specific records:
For RTSP each session record shows the session related
information, such as the the start and end time, and the
client and server addresses. In addition media specific in-
formation for each media element (i.e. an audio clip, a
background image etc) is shown including the URL and
the clip length of each element. For H.323, each session
record contains the IP addresses and phone numbers of the
participants, the call duration and information about the
audio codec and H.323 vendor whose software was used.

Normal tcpdump operation allows the specification of
a “snaplength” from the command-line, or uses a default
snaplength if none is specified. (The snaplength is the
maximum number of bytes from each packet that will
be dumped to file.) With mmdump, we need all of the
control messages in order to correctly parse them and
the snaplength should therefore be set to the maximum
MTU size on a particular medium. In general there is no
need however, to capture all of the streaming data pack-
ets. We have therefore added an option (-D), again used
in conjunction with the -w option, to reduce the effective
snaplength of data packets written to a dump file to only
header information of such packets. This dramatically re-
duces the storage requirements when raw dump files are
used.

IV. RESULTS

In this section we present results obtained from our use
of the mmdump tool. In Section IV-A we present results
of using mmdump to monitor RTSP traffic: Section IV-A.1
contains results of a single RTSP presentation in a con-
trolled environment, while Section IV-A.2 presents mea-
surement results from a probe point in the WorldNet IP
backbone. In Section IV-B we present a similar set of re-
sults for the use of mmdump on H.323 traffic: Section IV-
B.1 is for a single H.323 session in a controlled environ-
ment and Section IV-B.2 presents results for H.323 traffic
from the same probe point in the WorldNet IP backbone.

The results presented is meant to show some of the pos-
sibilities of the tool rather than general results about the
use of streaming media in the Internet.

7

A. RTSP Results

A.1 Individual session in controlled environment

In this case a single RTSP presentation was viewed by
means of a RealPlayer [9] client from a PC running Mi-
crosoft Windows. A Linux PC on the same Ethernet seg-
ment was running the mmdump tool to capture the inter-
action. The presentation in question was CNN Headline
News [10], which was streamed from the Internet.

The CNN Headline news presentation consists of a
small video section in the top left corner of the display
area. Below the video section is a text window for present-
ing the latest news in text format (this normally contains a
link to the CNN web site), in addition to an advertising sec-
tion and a hyperlink to provide feedback. The right-hand
side of display area consist of hyperlinks to other news-
related streaming presentations.

While not visible to the user the presentation in question
is served from two separate servers in different domains.
This requires two RTSP sessions, the details of which are
presented in Tables I and II and in Figure 5.

Table I shows the “base-URL” served by each server as
well as the number of RTSP control packets going between
client and server respectively. Note that because of the lo-
cation of the mmdump machine relative to the client ma-
chine, this traffic trace contained packets going in both di-
rections between the client and server machines. Because
of asymmetric routing in IP networks this is not the case
in general.

Table II shows the URL extension, which together with
the base-URL presents the complete URL for each object
that is part of the presentation. Also shown in the table is
the UDP port number chosen by the client, the number of
UDP packets used to stream each object to the client, as
well as a file type description field.

Figure 5 shows the packet arrival information for all
UDP streams on a common timeline. The offset on the
y-axis is used to depict the port number used for stream-
ing the media. Each small vertical line on a horizontal line
indicates a packet arrival event. Figure 5 clearly shows
how the first object “streamed” to the client is a SMIL
file [11], index.smi. This object in fact contains a descrip-
tion of the presentation which includes the layout of the
presentation display, the various objects associated with
each region of of the display, the location of each such
object and optionally a timeline indicating when different
object should be be displayed. It is thus from the SMIL file
that the client learns that some of its media should be re-
trieved from a different server. As indicated in Table II
the actual “interesting” media content is streamed from
the cnn.com domain, while several “support objects” like

6965

6970

6975

6980

6985

6990

6995

7000

3e+08 3.1e+08 3.2e+08 3.3e+08 3.4e+08 3.5e+08 3.6e+08 3.7e+08 3.8e+08

P
or

t N
um

be
rs

Time (micro_sec)

index.smi

audio/sting.rm

flash/1.swf

pix/back.jpg

text/left.rt

pix/ad.gif

text/links.rt

text/feedback.rt

ads/ad1-28.rm

text/nowplaying_headlinenews.rt

channel/headlines.rm28.rm (truncated)

Rednet 19 May 1999

Fig. 5. UDP activity for each media stream for CNN headline
news from Real Networks (180 seconds shown)

the background and links to other SMIL files are streamed
from the real.com domain.

A.2 Sessions in the public Internet

We gathered packet traces from a measurement probe
inside the public Internet, more specifically inside World-
Net, AT&T’s Internet Service Provider (ISP) business. In
all cases the traces were anonymized as soon as they came
off the link under study, before writing any packet headers
to stable storage.

The traces analyzed in this section were gathered from
our NYC probe point for the week 15 April 1999 to 22
April 1999. Since at the time mmdump was still being
tested the traces were gathered with a regular tcpdump cap-
turing all packets on TCP port 554 and all UDP packets in
the port ranges from 6970 to 7040 inclusive, and mmdump
was used exclusively in post processing mode. This proved
a useful means to gather data to test mmdump, but also
served to convince us about the need for a tool like mm-
dump. We captured the whole packet length for all TCP
packets, as this is required for the RTSP protocol parsing,
but only the first 136 bytes for UDP packets. The trace files
for the week resulted in approximately 15 Gbytes worth of
gzip’ed files. A new trace file was generated each 30 min-
utes and typically varied from below 10 Mbytes to well
over 100 Mbytes depending on the time of day. Using mm-
dump to trim these files to the traces it would have created
from the original data resulted in a 60% to 80% reduction
in required disk space per file.
Traffic Characteristics

One of the main questions we hope to address with this
work is to determine the amount of streaming media rela-
tive to other Internet traffic and to monitor any changes in
the longer term.

8

Session Session base URL TCP packets
No Client to server Server to client
0 albany-b.real.com/showcase/channels/cnn headlines/gold/ 66 75
1 realchannel.cnn.com/ 65 47

TABLE I
TWO RTSP SESSIONS ASSOCIATED WITH SINGLE CNN HEADLINE NEWS PRESENTATION

Session Media Client URL extension UDP UDP File type
No Stream Port packets Bytes
0 0 6970 index.smi 5 1656 SMIL

1 6972 audio/sting.rm 26 13620 Real Audio/Video
2 6974 flash/1.swf 18 5357 Shockwave Flash
3 6976 pix/back.jpg 30 14532 JPEG
4 6978 text/left.rt 8 2014 Real Text
5 6980 pix/ad.gif 17 6796 GIF
6 6982 text/links.rt 11 4032 Real Text
7 6984 text/feedback.rt 5 472 Real Text
8 6992 text/nowplaying headlinenews.rt 4 384 Real Text

1 0 6986 ads/ad1 28.rm 81 23609 Real Audio/Video
1 6994 channel/headlines.rm28.rm 3991 1578597 Real Audio/Video

TABLE II
ELEVEN MEDIA STREAMS ASSOCIATED WITH SINGLE CNN HEADLINE NEWS PRESENTATION

0

50000

100000

150000

200000

250000

0 50 100 150 200 250 300 350

N
um

be
r

of
 p

ac
ke

ts

Time (half hour intervals)

NYC probe (15 April 99 - 22 April 99)

TCP traffic server to client
UDP traffic server to client

Fig. 6. RTSP and related UDP packet counts

The issue of assymetric routing has been mentioned a
number of times in this paper. It turns out that for RTSP-
related traffic a very small percentage of traffic at the probe
point was in fact visible in both directions between client
and server. This can potentially lead to erroneous con-
clusions about the relationship between control and data
traffic for streaming media. For example, the network lo-
cality of a popular server might generate a lot of control
traffic seen going from clients to servers, without a recip-
rocal contribution in data streamed from the server if that
traffic does not pass the probe point. In Figure 6 we there-

fore show the control (RTSP/TCP) and data (UDP) traffic
volumes (in number of packets) going only from servers
to clients. This appears to be a reasonable comparison
of the relationship between control and data. As before
packet counts were generated for every half hour of the
trace data. The first observation regarding Figure 6 is that
peak hours are drastically shifted towards the late evening
hours. This contrasts with aggregate TCP traffic charac-
teristics (not shown) which normally have very clear peaks
during office hours. From Figure 6, activity over weekends
are not significantly lower than over weekdays, only more
evenly spread over all hours.

Figure 7 shows the packet length distribution for RTSP-
related (i.e. streaming) UDP traffic. Significant peaks
are at packet lengths much shorter than typical Maximum
Transmission Unit (MTU)sizes. Some of these can prob-
ably be attributed to concerns about delay and latency for
fairly low bitrate voice encoders and the distribution will
in general be influenced by popular voice and video encod-
ing and packetization schemes. Packet lengths for RTSP-
related TCP traffic follow the familiar distribution with 40
bytes corresponding to TCP ACK, FIN, and SIN packets,
and two MTU related peaks at 576 and 1500 bytes respec-
tively.

Content Analysis
In addition to looking at the traffic generated by stream-

ing media in a general sense, mmdump allows us to look at

9

0

5e+07

1e+08

1.5e+08

2e+08

2.5e+08

3e+08

3.5e+08

0 200 400 600 800 1000 1200 1400 1600

N
um

be
r

of
 p

ac
ke

ts

Packet length

NYC probe (15 April 99 - 22 April 99)

Packet length dist: RTSP related UDP

Fig. 7. UDP packet length distribution for RTSP related traffic

0

2000

4000

6000

8000

10000

12000

0 200 400 600 800 1000

N
um

be
r

of
 r

ef
er

en
ce

s

Unique objects

NYC probe (15 April 99 - 22 April 99)

Distribution of 385742 objects (1000/3074 unique shown)

Fig. 8. Distribution of URLs

a number of application- or protocol-specific issues. Fig-
ure 8 presents information about the URLs extracted from
our week-long trace. Only 3074 unique URLs were ob-
served from the trace. (Only domain names were taken
into account in determining uniqueness, so the same object
being served from two different machines in the same do-
main would not be considered unique.) Figure 8 shows the
number of references to each of the most popular 1000 ob-
jects. This Zipf-like distribution, showing that relatively
few objects are extremely popular, has strong implications
for caching strategies for multimedia objects.
Rate Adaptation

As a final example of the capabilities of mmdump, we
have investigated the transmission rate of a single me-
dia stream and considered its interaction with the ap-
plication control protocol. The RTSP protocol has a
SET PARAMETER method and as indicated by the name
this method can be used to set any parameter. One use
of this method by the RealMedia player (i.e. client) is to
set the required delivery bandwidth of a particular stream

0

50

100

150

200

250

300

350

400

450

3e+07 4e+07 5e+07 6e+07 7e+07 8e+07 9e+07

NYC probe (15 April 99 - 22 April 99)

UDP packets

0

50

100

150

200

250

300

350

400

450

3e+07 4e+07 5e+07 6e+07 7e+07 8e+07 9e+07
Time

NYC probe (15 April 99 - 22 April 99)

P
ac

ke
t n

um
be

r

BW set to 21400

BW set to 9361

BW set to 17260

BW set to 19777

BW set to 21400

BW set to 13781

BW set to 9163

BW set to 7554

BW set to 6621

BW set to 12140

BW set to 9870

BW set to 6563

Fig. 9. Packet arrivals for a single live UDP stream

from the server. The details of how a decision is made
to change the bandwidth and on how the server manages
to adjust the bandwidth of an existing stream is not pub-
licly known. However, by correlating the relevant RTSP
SET PARAMETER method instances with the packet ar-
rival times at the probe point, we can observe the interac-
tion from an mmdump-generated trace. One such example
is shown in Figure 9 and explained below. (Note that Real-
Media uses a proprietary transport protocol on top of UDP
for media streaming. It was therefore not possible to mon-
itor the sequence numbers of the media stream as would
be possible for an RTP based media stream.)

From the WorldNet trace data we extracted the control
and data packets for a particular RTSP session for which
we saw traffic in both directions between client and server.
The session in question was streamed from a live source
and contained only a single media stream. In Figure 9
we plot the timestamp of each UDP packet of the media
stream as it was captured by mmdump. The total dura-
tion of the trace is 75 seconds. Time is on the X-axis
while the Y-axis reflects the number of the correspond-
ing packet. The slope of this plot is therefore an indica-
tion of the rate at which UDP packets where logged by
mmdump (and the rate at which packets were sent by the
source), with a steeper curve corresponding to a higher
rate. The slope of the first part of the plot, packets 0
to 200, is clearly more steep than the final part of the
plot, packets 250 to 450. Superimposed on the plot of
UDP packet timestamps, is a number of horizontal dotted
lines. Each horizontal line corresponds to the arrival of a
SET PARAMETER method for a bandwidth parameter as
seen by the probe point. The value shown is the requested
delivery bandwidth in kbps. The sequence of these param-
eter requests goes from 21400 to 9361 to 17260 and 1977
in the first part, to 21400 and 13781 in the middle part

10

and ends with a more modest sequence of 9163 to 7554
to 6621 to 12140 to 9870 and 6563 in the final part of the
plot. This corresponds with the observed flatter slope of
the last part of the plot. (Note that since the probe point
is somewhere in the network between the client and the
server, there will be a time lag between the time that mm-
dump records a SET PARAMETER method, and the time
that the server will have responded to it.)

B. H.323 Results

B.1 Individual session in controlled environment

0 5 10 15 20 25 30 35
Time (seconds)

Q.931 Channel

H.245 Channel

TCP Data Channel

RTP Data Channel

RTP Control�Channel

Fig. 10. Packet arrival events for each channel of one H.323
session

Again we first show how mmdump captures an H.323
session in a controlled environment. In the lab three ma-
chines are connected over a shared Ethernet link. Two
Windows PC machines run Microsoft NetMeeting 3.1 and
they make a video conferencing session with each other
using H.323 protocol. A third machine runs mmdump
to capture the session on-line. The session lasts for ap-
proximately 35 seconds. Figure 10 shows packet arrival
events grouped by channels. Each horizontal line indicates
a channel, and there are five channels created in the dura-
tion of the session. Each small vertical line on a horizontal
line indicates a packet arrival event. The session begins
with the establishment of the Q.931 channel, followed by
the H.245 channel. Then, NetMeeting uses H.245 to ne-
gotiate ports for three data channels, namely the TCP data
channel, the RTP control channel and the RTP data chan-
nel. The latter two channels use UDP. In NetMeeting, the
TCP data channel carries file transfer, chat, and whiteboard
messages. The RTP data channel carries multimedia traffic
such as voice and video. The RTP control channel carries
metadata for the RTP data. Because this session exchanges
video images in real-time, the bulk of the packets are RTP

data, identified by the thick line of the RTP Data Channel.
It is important to note that except for the Q.931 channel,

whose callee port number is well-known, the port num-
bers associated with the other 4 channels are dynamically
negotiated. The callee port number of the H.245 channel is
embedded in the CONNECT message of a Q.931 packet.
The port numbers for the data channels are negotiated by
the H.245 Open Logical Channel messages.

B.2 Sessions in the public Internet

Next we present some H.323 results gathered over the
public Internet. As in the RTSP case, the results presented
here are from traces captured at the NYC probe point in
the WorldNet IP backbone.

The trace analyzed in this section was started on Sunday
August 22 1999 at 3:25pm EDT and lasted for 50 hours.
We captured 2667 H.323 sessions containing 540MB of
data. As in case of RTSP, we saved the entire length of
TCP packets, but only the first 136 bytes of UDP packets
were saved to reduce data size. Less than

���
of packets

were lost in the kernel.
There are two issues that may affect our result. First,

the current implementation of H.323 module of mmdump
assumes a peer-to-peer communication mode. It does not
work correctly if three or more parties are involved in a
session. The module, however, is known to work with
various types of H.323-enabled software, including Intel
Video Phone, MediaRing GoldenEye, Microsoft NetMeet-
ing, and VocalTec Telephony Gateway. Second, the traffic
observed at the probe point is highly asymmetric. There-
fore we incorporate various heuristics to the H.323 module
so that it can track a session with just half of the conver-
sation. For example, if we only see the traffic from caller
to callee and not from callee to caller, we will not get the
CONNECT message sent by the callee, which contains the
callee’s port number to follow the subsequent H.245 chan-
nel. In this case, we guess the H.245 port number of the
caller, which is usually a small increment of the caller’s
Q.931 port number.
Traffic Characteristics

Figure 11 shows the amount of aggregated H.323 con-
trol traffic (traffic exchanged in Q.931 and H.245 chan-
nels) and H.323 data traffic (traffic exchanged in H.323
data channels) over time. The figure shows that the amount
of control traffic is significantly lower than the amount of
data traffic. (Note the logarithmic scale on the y-axis.)
As expected, we observe positive correlation between the
amount of control traffic and data traffic.
Packet Length Distribution

Conferencing and packet telephony multimedia appli-
cations generally require good real-time performance.

11

16

64

256

1024

4096

16384

65536

262144

08/22
12:00

08/23
00:00

08/23
12:00

08/24
00:00

08/24
12:00

08/25
00:00

08/25
12:00

08/26
00:00

N
um

be
r

of
 p

ac
ke

ts
 in

 lo
g

sc
al

e

Time

H.323 control traffic
H.323 data traffic

Fig. 11. Packet counts for H.323 control vs. data traffic

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

0 200 400 600 800 1000 1200 1400 1600

N
um

be
r

of
 p

ac
ke

ts

Packet length (bytes)

Packet length distribution: H.323-related UDP

Fig. 12. UDP packet length distribution for H.323 related traffic

Therefore, we expect that these applications prefer to ex-
change smaller packets with higher packet rate rather than
larger packets with lower packet rate. Here we show the
packet length distribution for H.323 related UDP traffic in
Figure 12. We observe that significant peaks are at packet
lengths smaller than 200 bytes, which are shorter than typ-
ical MTU sizes.

As for the RTSP results, the packet length distribution
for TCP traffic has a familiar distribution with a large peak
at 40 bytes corresponding to TCP ACK, FIN, and SIN
packets, and several peaks related to different MTU sizes.
Per-Session Statistics

One advantage of using mmdump is its ability to track
each session individually. We will show an example that
derives results based on per-session statistics.

One question of interest is how long a H.323 session
lasts. Figure 13 shows a histogram of different ranges of
session duration with the percentage of sessions in that
range. Here we consider only the subset of sessions for
which mmdump was able to capture some UDP packets,
and discard sessions for which mmdump did not capture

0

2

4

6

8

10

12

14

16

18

20

1 4 16 64 256 1024 4096 16384

P
er

ce
nt

ag
e

of
 s

es
si

on
s

Duration of H.323 sessions in log scale (seconds)

Fig. 13. Duration of H.323 sessions

any UDP packets. The latter can happen if the callee of a
session did not answer or had incompatible terminal capa-
bilities with the caller. Session duration is computed as the
time between the first packet received (usually the Q.931
SETUP packet) and the last packet received (usually the
H.245 FIN packet). The figure shows a majority of calls
last between 16 seconds and four minutes. The figure also
shows several sessions lasting longer than an hour.

V. RELATED WORK

A recent paper [12] presents a preliminary analysis of
streaming media traffic originating from a popular Internet
audio service. It is one of the first studies of its kind. How-
ever, the set of IP addresses corresponding to the media
servers under study was known a priori. In addition, the
link under study was close to these servers and was known
to carry all the traffic of interest. Under those conditions,
it is not difficult to set up static packet filters to capture
this traffic without overwhelming the trace collector with
irrelevant traffic. That work therefore does not address the
challenges of monitoring unknown multimedia traffic on
an arbitrary link as ours does.

A large body of Internet traffic capture and analysis soft-
ware has been developed over the years. Here we survey
the subset that we feel is most relevant to our work.

The tcpdump [5] tool and its underlying packet capture
library libpcap [6] have been widely used by the Internet
research community. We have already described tcpdump
in detail and noted that it does not handle dynamically ne-
gotiated port numbers. mmdump adds this capability to
tcpdump.

Online extraction of application specific information,
mainly to reduce the volume of generated data, has been
reported in [13] and [14]. A software engineering ap-
proach similar to our own, is presented in [13] where tcp-
dump has been extended to perform online extraction of

12

HTTP information. A more generic measurement plat-
form, called Windmill, is described in [14]. This platform
is meant to run continually providing the means to per-
form several “experiments” without ever terminating the
Windmill instantiation. Since different experiments might
be interested in different packet streams, the platform has
the ability to dynamically modify the packet filter expres-
sion. This change in packet filter expression is however
performed at the time granularity of different experiments,
not on the per multimedia stream timescales as is the case
with mmdump.

CoralReef [15] is an evolving suite of tools for collect-
ing and analyzing Internet traffic. It is built upon the libco-
ral packet monitoring library and aims for flexibility and
high performance. To our knowledge, CoralReef does not
yet handle dynamically negotiated port numbers.

Narus [16] and Packeteer [17] have recently intro-
duced commercial traffic capture and analysis products
that reportedly handle dynamically negotiated port num-
bers. However, we have not had the opportunity to evalu-
ate these products. To our knowledge, their internal details
have not been made public and their source code is not
available.

Finally, there are a number of tools tailored to monitor-
ing and analyzing multimedia traffic. Among these are rtp-
dump [18] and rtpmon [19]. rtpdump decodes and displays
RTP packets. rtpmon monitors RTP sessions and displays
statistics based on the contents of RTCP packets. Neither
parses session control protocols like RTSP and H.323, or
handles dynamically negotiated port numbers.

VI. CONCLUSIONS AND FUTURE WORK

We have presented the design, implementation, and use
of a new tool for monitoring multimedia traffic on the In-
ternet. mmdump is based on tcpdump and further incorpo-
rates several novel features that make it practical to moni-
tor unknown multimedia traffic on an arbitrary link. One,
it employs protocol-specific parsers to determine which
port numbers are dynamically selected for media transport
by multimedia session control protocols. Two, it main-
tains per-session state and attempts to handle lost, dupli-
cate, reordered, and fragmented control messages. Three,
it uses heuristics to deal with incomplete information due
to asymmetric routing.

We have been using mmdump to monitor traffic from
RTSP and H.323 sessions in AT&T WorldNet. The tool
has already helped uncover a number of interesting fea-
tures of this traffic:

� Multimedia sessions have a rich structure. Even a seem-
ingly simple news clip can be composed of more than 10
objects transferred over different port numbers and from

multiple servers in different domains.
� Access patterns for multimedia objects follow a Zipf-
like distribution, with popularity dropping off quickly out-
side a relatively small number of extremely popular ob-
jects.

� RTSP clients can request that servers adjust the trans-
mission rate for ongoing sessions, based for example on
observed packet losses. This finding begins to address
the issue of whether multimedia traffic exhibits appropri-
ate congestion-control behavior.

� The duration of H.323 sessions vary greatly, from a few
seconds to over an hour. A majority of sessions last be-
tween 16 seconds and four minutes. This distribution of
call durations is similar but not identical to that of tradi-
tional long-distance telephone traffic.

In terms of ongoing and future work, we have recently
added to mmdump a different and more complete H.323
parser than the one described in this paper. We are experi-
menting with using it to monitor the quality of service in a
voice-over-IP testbed. We are also developing a SIP parser
to add to the existing RTSP and H.323 parsers. In order to
improve the performance of dynamic port processing, we
are looking into adopting a modified BPF+ that includes
compiler support for incremental filter updates. Finally,
we continue to use mmdump to monitor multimedia traffic
on the public Internet and plan to perform a more thorough
analysis of this traffic’s growth and characteristics.

ACKNOWLEDGEMENTS

The RTSP parser was derived from a public-domain
RTSP implementation by RealNetworks [20]. The H.323
parser was derived from software developed at Columbia
University by Christopher Kang.

REFERENCES

[1] H. Schulzrinne, A. Rao, and R. Lanphier, “Real Time Streaming
Protocol (RTSP).” RFC 2336, April 1998.

[2] M. Handley, H. Schulzrinne, E. Schooler, and J. Rosenberg, “SIP:
Session Initiation Protocol.” RFC 2543, March 1999.

[3] “Recommendation H.323: Visual Telephone Systems and Equip-
ment for Local Area Networks Which Provide a Non-guaranteed
Quality of Service.” ITU-T, 1996.

[4] S. R. McCanne and V. Jacobson, “The BSD Packet Filter: A New
Architecture for User-level Packet Capture.” Proc. 1993 Winter
USENIX Technical Conference, January 1993.

[5] V. Jacobson, C. Leres, and S. McCanne, “tcpdump - dump traffic
on a network.” UNIX man page.

[6] V. Jacobson, C. Leres, and S. McCanne, “pcap - Packet Capture
library.” UNIX man page.

[7] A. Begel, S. McCanne, and S. L. Graham, “BPF+: Exploiting
Global Data-flow Optimization in a Generalized Packet Filter Ar-
chitecture.” Proc. ACM SIGCOMM ’99, August 1999.

[8] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RTP:
A Transport Protocol for Real-Time Applications.” RFC 1889,
January 1996.

13

[9] RealNetworks. http://www.real.com.
[10] CNN. http://www.cnn.com.
[11] W3C, “SMIL: Synchronized Multimedia Integration Language.”

http://www.w3.org/AudioVideo/#SMIL.
[12] A. Mena and J. Heidemann, “An Empirical Study of Internet Au-

dio Traffic.” Proc. IEEE Infocom 2000, March 2000.
[13] A. Feldmann, “Continuous online extraction of HTTP traces from

packet traces.” Proc. W3C Web Characterization Group Work-
shop, November 1998.

[14] G. R. Malan and F. Jahanian, “An Extensible Probe Architecture
for Network Protocol Performance Measurement.” Proc. of ACM
SIGCOMM’98, August 1998.

[15] CAIDA, “Coralreef.” http://www.caida.org/Tools/
CoralReef/.

[16] Narus. http://www.narus.com.
[17] PACKETEER. http://www.packeteer.com/.
[18] H. Schulzrinne, “rtpdump.” http://www.cs.columbia.

edu/˜hgs/rtp/rtpdump.html.
[19] D. Bacher, A. Swan, and L. A. Rowe, “rtpmon: A Third-Party

RTCP Monitor.” http://bmrc.berkeley.edu/people/
drbacher/projects/mm96-demo/index.html.

[20] RealNetworks, “RTSP: Reference Implementation.” http:
//www.real.com/devzone/library/fireprot/
rtsp/index.html.

