
SIMPLIFIED PROTOCOL CAPTURE
(SIMPCAP)

Michael W. Corley*, Michael W. Weir†, Kenric Nelson†, Andrew J. Karam‡

Abstract--Standard packet capture architectures have no
inherent support for protocol decoding. Client systems are
required to handle all decoding and maintenance of protocol
handling constructs in a proprietary fashion. Resultant system
architectures are often not optimized and difficult to expand
upon, particularly for defining and implementing new and
unhandled protocols. This paper describes a new protocol
decoding system called Simplified Protocol Capture
(SIMPCAP). The system, developed for legacy use with
LIBPCAP, constitutes an optimized high-level library
architecture that automates protocol decoding and maintains
protocol definition knowledge constructs globally. The
SIMPCAP framework incorporates a high level API
(application programming interface) for convenient and
flexible access to protocol field state.

Index Terms--network packet capture, protocol
demultiplexing, intrusion detection

I. INTRODUCTION
Most of today’s network interface and analysis tools, such
as tcpdump [1], SNORT [2], Ethereal [5], etc. are based on
LIBPCAP [4], a widely used standard packet capture
library that was developed for use with the Berkeley Packet
Filter (BPF) [3] kernel device. Essentially, the BPF is an
extension to the OS kernel enabling low-level
communication between the operating system and a
network interface adapter. Traditionally, network analysis
tools (architectures) are composed of three major
components: the BPF, LIBPCAP, and the client system as
depicted in Fig. 1. The major limitation exposed in this
model exists between LIBPCAP and the client system. As
shown, no inherent functionality exists to aid the client
system with the overhead of decoding and interpreting the
raw byte encoded sequence that comprises a network
packet. Programmers are therefore left to deal with this in a
completely proprietary fashion. This is clearly a process
that adds significant design and development overhead and
often requires extensive programmer expertise. Even
worse, this is a development step that is repeated many
times and in many different ways depending on issues such
as time constraints and programmer experience. More
often than not, users and maintainers of such systems are
network analysts who do not possess the necessary
programming background to be effective maintainers as

*Lockheed-Martin, 32 Brooks Rd., Rome, NY 13441
†SI International, 1300B Floyd Ave., Rome, NY 13441
‡AFRL/IFGB, 525 Brooks Rd, Rome NY, 13441
*Correspondence: (315) 330-3746, mike-corley@acs-inc.com

such. This results in a boundary that often keeps an analyst
from exploring new ideas and directions.

Fig 1. Standard Packet Capture Architecture:
LIBPCAP (WINPCAP)

The system we have developed to address these issues is
called Simplified Protocol Capture (SIMPCAP). It is
unique to the network analysis and software development
communities for the following reasons. First, it is designed
for legacy use with LIBPCAP, so that no alteration to
current approaches is necessary; any code that is written
with SIMPCAP can run side by side with any other code
written to incorporate the LIBPCAP library. Second,
decoding constructs are optimized and automated, requiring
only minimal programming maintenance; it is designed
with the analyst in mind. Additionally, the architecture is
designed for rapid introduction of new and unhandled
protocols into the system; a few simple script-like changes
are all that is necessary to expand the functionality of
SIMPCAP to provide new protocol decodes and data to the
client program. This is essential to non-programmer
analysts who are often under heavy time constraints.
Protocol definition and handling details are statically kept
within the system framework. This allows clients to
efficiently share a common protocol definition knowledge
base and provides application independent protocol
decoding functionality. In other words, protocol decoding
constructs are portable among all clients and in many
development environments. Finally, the system exports a
highly expressive C-language API (application
programming interface) that maintains convenient robust
access to decoded protocol state, as well as the inherited

LIBPCAP capture functionality. The constructs of the API
are particularly convenient for development of next
generation intrusion detection and anomaly detection
systems that encompass a great deal of statistical analysis
on protocol header data.

Other researchers have recognized the deficiency in relying
on client software to decode network protocols and have
developed software applications that address aspects of the
mentioned shortcomings. These include, PYLIBPCAP [8],
which essentially comprises a set of python scripts that
provide packet decoding constructs and sufficient client
access to decoded protocol content. The LIBNET [9]
system is a high-level API for constructing and injecting
LIBPCAP packets. It exports a portable interface for low
level packet shaping, and shields the client from tedious
low level details such as those associated with protocol
handling and demultiplexing. The System for Modular
Analysis and Continuous Queries [10] provides a Dynamic
Type System which uses polymorphic techniques to
provide flexibility in extracting different packet types.
The remaining sections of this paper are organized in the
following manner: Section 2 provides an overview of the
Berkeley packet Filter (BPF) kernel device and the
LIBPCAP capture system, followed by a brief description
of the limitations of the client architecture model. Sections
3 and 4, respectively entail an overview of the SIMPCAP
system and a detailed explanation of the system
architecture. Section 5 briefly describes the SIMPCAP role
in a current research initiative called the Second Stage
Intrusion Monitor (SSIM). Section 6 summarizes
SIMPCAP and provides a view of additional future
directions for the package.

II. STANDARD PACKET CAPTURE OVERVIEW

A. BERKELEY PACKET FILTER (BPF) OVERVIEW
As mentioned above, traditional network capture
architectures are based on the LIBPCAP library and the
Berkeley Packet Filter (BPF) code. The BPF is the low
level capture device that provides raw access to data link
layers in a protocol-independent fashion. It is essentially a
set of low level routines wrapped by C-language function
calls to provide the client programmer with higher level
system functionality for opening and managing optimized
packet capture sessions. The most attractive feature of the
BPF is the filter machine on which its name is based. This
comprises an expressive instruction set for defining filters
to instruct the capture device to retrieve all packets that
match a user defined filter (template). See the example
illustration in Fig 2 [11]. Although the BPF is a highly
efficient raw capture environment, it is generally not
suitable for developing network capture applications unless
unusually low-level access is a requirement. Managing a
BPF capture session can be tedious in that it often involves
a significant degree of interaction between user- and kernel-
level processes. The client retrieves packets by performing
reads directly into the kernel buffer space. In addition, the
BPF does not export a standard capture file format; there is

no functionality for managing the raw streams and
providing a structured output that can be conveniently
stored or processed. Live capture sessions can not be
conveniently stored or ported to different tools for analysis.

Fig. 2. Example BPF Filter that accepts only IP
packets between host 128.3.112.5 and
128.3.112.35

B. LIBPCAP OVERVIEW
LIBPCAP [4] is a high-level C language library that
extends the BPF library constructs. In particular, it
provides convenient system functions for managing live
and offline capture sessions, and for interacting with and
retrieving individual packets from the BPF kernel space.
The LIBPCAP capture file format provides a standard and
efficient construct for handling offline capture sessions.
Captures files are portable to a broad range of operating
system platforms and provides convenient accessibility to
any tool that conforms to the standard. LIBPCAP further
extends the functionality of the BPF filter constructs in
allowing programmers to specify filters in a higher-level
syntax (such as that used by tcpdump [1]) as shown in Fig.
3. In particular, LIBPCAP implements functions to
compile the filter syntax to the native BPF instruction form.

Fig. 3. Example LIBPCAP filter to match the
string ‘Quit’ in the TCP header.

The LIBPCAP file format coupled with the BPF filter
accessibility forms the heart of the functionality of many
network analysis tools in use today, including tcpdump and
Ethereal. Although LIBPCAP does provide convenient
access to packet data, there is no inherent functionality for
decoding the protocol content encoded in the raw packet.
Until the writing of this paper, this has been the full
responsibility of the client, which is clearly depicted in the
upper half of Fig. 1. In fact, proprietary protocol decoding,
interpretation of protocol content, and matching of such
content to some form of template has been the basic
mindset of many systems used for intrusion detection.

C. LIMITATIONS OF THE CLIENT ARCHITECTURE
MODEL

The basic operation of the LIBPCAP architecture is to
interact with the BPF kernel and provide seamless access to
individualized packets. The packet contents are, however,
raw byte encoded. Currently, there is no intrinsic support
to provide convenient decoding functionality. Therefore,
client architectures are proprietary and often difficult to
expand upon, particularly for defining and processing new
and unhandled protocols. Since the applications are
proprietary, their extension to handle new and different
protocol information is not guaranteed and can require
extensive source code modification. Code level
modifications often lead to serious architectural integrity
risks. Insufficient programmer expertise or too many
disparate programmer modifications can lead to loss of
robustness, erroneous runtime errors, degraded performance
and even system compromises such as buffer overflows. In
terms of the sheer volume of data that may need to be
analyzed by a client application, the framework for which
the protocol content memory space is utilized by a client
should be standardized and isolated from the overall system
architecture; there is no such mechanism within the
LIBPCAP and BPF arrangement.

III. SIMPLIFIED PACKET CAPTURE (SIMPCAP)
OVERVIEW

SIMPCAP is a flexible protocol decoding system matched
to a rich client-side API and designed for follow-on use
with the standard packet capture system LIBPCAP. Fig. 4
compares the framework for packet capture and client
interaction between the typical BPF/LIBPCAP approach
(right side) and the modified SIMPCAP architecture (left
side). Recall from the previous discussion, LIBPCAP
essentially delivers a raw byte encoded packet to the client.
The primary objective of SIMPCAP is to isolate the
complexities of defining and handling various protocols and
to shield the client from such details, for the purposes of
obtaining smaller, more robust and portable client designs.

Fig. 4. SIMPCAP code layer between LIBPCAP
and client.

This effectively alleviates the client from managing
protocol decoding overhead, and allows for direct
interaction with protocol field data, rather than the
conventional tedious interaction with raw packets. Note
that SIMPCAP still maintains the full capture functionality
as provided by LIBPCAP and the BPF; the “client” could
be a simple pass-through application that just hands off the
raw data directly to traditional packet processing
applications.

SIMPCAP also standardizes the procedure to implement
new or modified protocols as illustrated in Fig. 5 (and
covered in detail in the following sections). This
standardized approach helps ensure architectural integrity
and significantly reduces requirements for software
programmer expertise, as is often needed for maintaining or
modifying conventional applications. A more important
aspect of this approach is the ability to share a global
protocol knowledge database. The Protocol Definition
Database (PDD), illustrated in the left-middle section of
Fig. 4, contains all protocol definitions in the system. All
clients written to use SIMPCAP can use the most current
PDD available and immediately have access to the new
protocol definitions built up by the community.

 Fig. 5. Adding new protocols to SIMPCAP.

To provide maximal flexibility for client-side applications,
SIMPCAP provides access to protocol field state through a
C language API as shown functionally in Fig. 6. It enables
both experienced and beginner programmers to take
immediate advantage of the expressive constructs of the
programming environment and combine them with
SIMPCAP to achieve the optimized and powerful
development requirements of next generation intrusion
detection and anomaly detection systems. For instance,
consider an intrusion detection system that relies more on
heuristics and complex statistical analysis of protocol
header data for raising alerts, rather than the conventional
system approach that involves matching packet content to
some sort of template or rule set to trigger an event. The
client-side programmer can work directly with the field
characteristics of the packets, and let SIMPCAP figure out
the lower-level steps necessary to gather the information
and provide it to the client application.

Fig. 6. Application Programming Interface (API)
overview.

SIMPCAP uses efficient memory storage/retrieval
techniques to maintain a workable user environment that
does not scale linearly with the size of the capture file
processed. As packets are processed through SIMPCAP,
the memory space is cleared and re-used as soon as the
decoded information is passed on to the client application.

It is important to re-emphasize that the SIMPCAP
framework constitutes a wrapper for the LIBPCAP
architecture. Therefore, the raw encoded packet data, as
well as the all of the LIBPCAP and BPF capture system
functionality is available through the system API layer. Not
only does this maintain maximal flexibility, it provides a
convenient environment to transition SIMPCAP constructs
into currently available tools. The motivation here would
naturally be to enhance or replace the system architecture
for expanded flexibility and functionality to meet next
generation requirements (e.g. interpretation / handling for
IPv6 [6]), as well as provide the foundation for a much
richer set of protocol definitions that can be shared across
disparate client applications while maintaining
compatibility with current tools. In essence, this provides a
means to simplify the application architecture for new tools,
keep the old tools, and begin building tools that address the
analysis of packet data and not the processing of the packets
themselves.

IV. SIMPCAP ARCHITECTURE
The SIMPCAP architecture model is designed to efficiently
decode packets by individual layers corresponding
(initially) to the TCP/IP [6] protocol suite. The framework
is comprised of four primary entities as depicted in Fig 7.
They are as follows: an automated protocol decoding unit
(PDU), the common packet abstract data type (ADT) that
feeds the decoder unit from the SIMPCAP API, a protocol
definition set (PDS) that defines the entities that are
available to the decoder unit, and a protocol handler set
(PHS) that determines the disposition of the packet entities
that are processed by the decoder unit. The PDS is
comprised of four layer-specific protocol decoder units.

 Fig. 7. Detailed SIMPCAP architecture overview.

Each is designed to work in unison to demultiplex each
layer of the raw byte encoded packet. The PDU will be
further discussed in next section. Each PDS/PHS set
contains four distinct source code files that correspond to
exactly one layer of the TCP/IP protocol suite as illustrated.
Specifically, protocol definitions and handler functions are
individually defined for the link layer, network layer,
transport layer, and application layer. An example
implementation of the transport layer component of a new
system protocol is illustrated in Fig. 5. First, an appropriate
name is chosen for the new protocol definition (here UDP).
The C-code protocol definition (step 2) is built and added to
the appropriate layer PDS file (here TRANSPORT),
becoming part of the protocol definition set. Then, a
pointer reference to the protocol type definition is added to
the appropriate section of the packet ADT for access via the
API. Finally, a handler for the protocol is included in the
corresponding source code file of the PHS. The PDU,
using the PHS, is responsible for forwarding protocol
references to the packet ADT as discussed in the following
section.

Fig. 8. Packet ADT (abstract data type) – the
.

d

As illustrated in Fig. 7 the packet ADT is common to all

ns

primary user interface to the protocol field state
The layered protocol boundaries are segregated
and no function call is needed to retrieve the fiel
state.

layer specific entities for the PDU, PDS and PHS. The
packet ADT construct is sub structured to contain sectio

typedef struct _PACKET_ADT
{
 struct pcap_pkthdr pcap_hdr;
 /* reference to PCAP header, (timestamp, etc) */
 const u_char* raw_packet;
 /* reference to the raw packet as delivered by libpcap device */
 int frame_type;
 /* 1 = ETHERNET (RFC 894) 2 = IEEE 802.3 (RFC 1024) */
 LINK_LAYER LINK;
 /* access to link layer protocol break down */
 NETWORK_LAYER NET;
 /* access to network layer protocol break down*/
 TRANSPORT_LAYER TRANSPORT;
 /* access to transport layer protocol break down */
 MAINTENCE MAINT;
 /* access to maintence protocol (ICMP, IGMP) break down */
} PACKET;

corresponding to each layer that comprises a TCP/IP
packet. Fig. 8 and Fig. 9 show code snippets of the A
format, structure and usage.

DT

Fig. 9 Link Layer structure with references to the

A. THE PROTOCOL DECODER UNIT (PDU)
 T ng a

egins

yer
n

s

 are

Ethernet and IEEE 802.3 frame types.

he system performs demultiplexing by incorporati
decoder unit for each respective TCP/IP layer into a
common protocol decoder unit (PDU). The process b
naturally with the link layer-specific constructs of the PDU.
Using the PDS and the PHS, the PDU invokes the
appropriate protocol hander which strips the link la
protocol from the raw byte sequence. A reference is the
forwarded to the corresponding portion of the common
packet ADT and the embedded link layer protocol is
handed off to the network layer decoding constructs. Thi
process is repeated until the entire raw byte encoded packet
is fully decoded as depicted in Fig. 10. When the PDU
execution is complete, the fully decoded packet contents
accessible through the respective sections of the API.

Fig. 10. Decoder Execution Flow.

he PDU unit employs an innovative technique to carry out

ayer-

ke the
link layer VLT for instance, the internet protocol version 4

 the

ss

o
et

d in

CURRENT APPLICATIONS
The SIMPCA
interface com ent project

 at

ient
ket

on is a
ut

T
the decoding process. Each layer-specific decoder is
implemented with a vector lookup table (VLT). Each l
specific VLT functions in essentially the same manner. All
index positions of the VLT are associated with the
corresponding protocol identifier for that index. Ta

(IPv4) [6] is an embedded link layer protocol. It is
identified by the 16-bit Ethernet frame type code 080016 =
204810 [6]. Therefore, the index position of 204810 in
link layer VLT contains the memory address of the protocol
handler function for IPv4. Explicit reference to this vector
location would therefore resolve to the invocation of the
handler function for IPv4, and header contents would be
stripped from the otherwise raw byte sequence. The proce
begins as the raw packet enters the link a layer decoder of
the PDU (refer to Fig. 10). Although the system is designed
with consideration of handling multiple frame types, the
current implementation is limited to Ethernet. The 16-bit
Ethernet type code is used as an index into the link layer
VLT. This resolves to the appropriate handler invocation
for the embedded link layer protocol encapsulated by the
Ethernet frame. If the embedded protocol is one that
defines further embedding (such as IPv4 or IPv6 [6]) then
the appropriate protocol field is used as index into the
network layer VLT. In the case of IPv4, the 8-bit protocol
field is used as index to the network layer VLT. This in
turn resolves to the appropriate invocation of the handler
for whichever embedded network layer protocol is being
carried (e.g. TCP, UDP, ICMP, etc.) [6]. As mentioned
previously, each handler must include all code necessary t
forward a reference to the appropriate section of the pack
ADT. This technique is attractive in that the PDU
execution is begun by the initial reference to the link layer
VLT. All other components of the decoder are invoke
serial automated fashion as the protocols for each layer are
demultiplexed.

V.

/* reference the LINK layer frame types: ethernet and IEEE 802.3 */

_hdr;
 stand er (RFC 894) */

t, IP, RARP, ARP, etc)

P framework provides the network packet
ponent for a research and developm

currently being conducted by the Information Directorate
Air Force Research Laboratory, Rome Research Site,
Defensive Information Warfare Branch (AFRL/IFGB). The
Second Stage Intrusion Monitor (SSIM) is an initiative to
provide innovative statistical and information theoretic
techniques for next generation intrusion detection and
anomaly detection systems. The basis of the SSIM
architecture is the SIMPCAP code, which allows the cl
application programmer to focus on the selection of pac
features and the analysis tools to apply to those features to
determine the existence of anomalous behavior. As
depicted in basic SSIM architecture diagram of Figure 11,
SIMPCAP is central to all applications (clients),
conveniently alleviating protocol decoding and handling
overhead. Within this architecture, each applicati
component of the system that builds specific statistics abo
the underlying traffic content. The statistics are combined
to build heuristics, visualize correlation among disparate
events, and provide baseline input for the information
theoretic processors.

typedef struct _LINKLAYER
{

THER_HDR* ether E
 /* reference to ard ethernet head
 ETHER_802_3_HDR* ieee_802_3_hdr;
 /* reference to IEEE 802.3 (RFC 1042) */
 ARP_HDR* arp_hdr;

 to arp / r /* reference arp */
; const u_char* payload

the fra /* reference to me payload */
 unsigned short emb_p_type;

nk la /* the type of li yer protocol presen
*/

} LINK_LAYER;

Fig. 11 Second Stage Intrusion Monitor (SSIM)
Overview

Client-side applications being designed for the SSIM
include information theoretic processors comprised of
entropy measures as devised by C. Tsallis and C. Shannon
[7]. These techniques provide a baseline for modeling
systems that contain long range correlation, long term
memory, or contain inherently self similar constructs.
SIMPCAP provides an efficient engine to deliver packet
characteristics and information to these components for
modeling network traffic anomalies.

The applications are powerful in that they are not limited by
individual network interfacing constructs. Although the
interface to the raw network content is maintained through
SIMPCAP, applications as such need only provide explicit
references to the protocol field contents.

VI. CONCLUSION AND FUTURE DIRECTIONS
 In this paper we have presented a flexible and extensible
protocol decoding engine and client-side API called
SIMPCAP (Simplified Protocol Capture). The system is
designed as a convenient and efficient interface between
LIBPCAP and client applications. This provides the
necessary constructs to isolate and remove protocol
decoding requirements from the client application. The
decoding aspects are automated, optimized, and easily
extensible for unhandled protocols, providing a convenient
environment for non-programmer analysts to explore new
ideas and directions. The system exports a flexible and
highly expressive C-language API enabling users to
efficiently combine a development-rich environment with
network protocol analysis. It also allows for a standardized
approach to integrate community-developed protocol
decoders into a shareable processing environment. It
currently runs on both Linux and Windows platforms.
Two promising future directions for this project include a
virtual file representation for relating multiple trace
(capture) files based on user selectable criteria, and a packet
capture file processor that is multi-threaded and can be used
independently from the LIBPCAP library, allowing parallel
processing of large packet captures.

The virtual file representation will enable SIMPCAP to
deliver a packet state that is representative of one or more
related trace files through a seamless session. Analysts
typically perform some sort of file manipulation for
extended capability or added convenience in normal
processing. There is often the desire to physically
concatenate multiple capture files, to extract particular
regions of files that are suspected to contain certain content,
or to view and analyze portions of multiple files

comparatively. Currently, a suite of open source data
manipulation tools are used to carry out these basic
functions, with the real data analysis being done in the
analyst’s head. As data volumes get larger, and their
content more disparate, such functionality becomes more
complex and even impractical. A virtual file representation,
however, constitutes a preprocessing stage that enables
analysts to index one or more capture files conveniently,
based on user criteria, and implement visualizations that
provide meaningful output. This extension to SIMPCAP
will enable the client programmer to open and decode
virtual files in much the same fashion as opening LIBPCAP
trace files for post-mortem analysis.

The multi-threaded packet-processing approach can be used
to reduce the amount of dead time that analysts have to
experience when processing large capture files. Rather than
use a linear LIBPCAP session to step through each packet
in serial succession, the SIMPCAP engine and API (when
combined with an appropriate metadata file) can provide a
structured binary data set that can be operated on directly
and parsed to multiple threads for rapid calculation and
collection of information about the capture.

VII. REFERENCES

[1] V. Jacobson, C. Leres, and S. McCanne,
tcpdump, Available via anonymous ftp at
ftp://ftp.ee.lbl.gov.

[2] M. Roesch, Snort – Lightweight intrusion
detection for networks, Proceedings of the
13th Systems Administration Conference.,
USENIX, 1999.

[3] S. McCanne, and V. Jacobson, The BSD Packet Filter:
A New Architecture for User-level Packet Capture,
Proceedings of the 1993 Winter USENIX Technical
Conference,San Diego, CA.

[4] S. McCanne, C. Leres and V. Jacobson,
LIBPCAP, available via anonymous ftp,
ftp://ftp.ee.lbl.gov.

[5] Ethereal. What Is Ethereal?
http://www.ethereal.com/docs/user-
guide/x69.html.

[6] R.W. Stevens, TCP/IP Illustrated Volume 1: The
Protocols, Addison Wesley, 1994, pp. 1-34.

[7] K.P. Nelson and P.E. Losiewicz, Application of Tsallis

Entropy to Bit-stream Analysis, in: Proceedings of the
8th Canadian Workshop on Information Theory, 2003.

[8] D. Margrave, PYLIBPCAP Project,

http://mail.python.org/pipermail/python-announce-
list/2001-January/000639.html.

ftp://ftp.ee.lbl.gov/
ftp://ftp.ee.lbl.gov/
http://www.ethereal.com/docs/user-guide/x69.html
http://www.ethereal.com/docs/user-guide/x69.html
http://mail.python.org/pipermail/python-announce-list/2001-January/000639.html
http://mail.python.org/pipermail/python-announce-list/2001-January/000639.html

[9] LIBNET, LIBNET Documentation,
http://libnet.sourceforge.net/#docs.

[10] M. Fisk, G. Varghese, Agile and Scalable Analysis of

Network Events, Proceedings of the second ACM
SIGCOMM Workshop on Internet measurment,
Marseille, France.

[11] S. McCanne and V. Jacobson, The BPF Manual

Reference Pages, http://www.gsp.com/cgi-
bin/man.cgi?section=4&topic=bpf.

http://www.gsp.com/cgi-bin/man.cgi?section=4&topic=bpf
http://www.gsp.com/cgi-bin/man.cgi?section=4&topic=bpf

	Introduction
	STANDARD PACKET CAPTURE OVERVIEW
	BERKELEY PACKET FILTER (BPF) OVERVIEW
	LIBPCAP OVERVIEW
	LIMITATIONS OF THE CLIENT ARCHITECTURE MODEL

	SIMPLIFIED PACKET CAPTURE (SIMPCAP) OVERVIEW
	SIMPCAP ARCHITECTURE
	THE PROTOCOL DECODER UNIT (PDU)

	CURRENT APPLICATIONS
	CONCLUSION AND FUTURE DIRECTIONS
	REFERENCES

