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Abstract--Standard packet capture architectures have no 
inherent support for protocol decoding. Client systems are 
required to handle all decoding and maintenance of protocol 
handling constructs in a proprietary fashion. Resultant system 
architectures are often not optimized and difficult to expand 
upon, particularly for defining and implementing new and 
unhandled protocols. This paper describes a new protocol 
decoding system called Simplified Protocol Capture 
(SIMPCAP). The system, developed for legacy use with 
LIBPCAP, constitutes an optimized high-level library 
architecture that automates protocol decoding and maintains 
protocol definition knowledge constructs globally. The 
SIMPCAP framework incorporates a high level API 
(application programming interface) for convenient and 
flexible access to protocol field state. 
 
Index Terms--network packet capture, protocol 
demultiplexing, intrusion detection 

I. INTRODUCTION 
Most of today’s network interface and analysis tools, such 
as tcpdump [1], SNORT [2], Ethereal [5], etc. are based on 
LIBPCAP [4], a widely used standard packet capture 
library that was developed for use with the Berkeley Packet 
Filter (BPF) [3] kernel device.  Essentially, the BPF is an 
extension to the OS kernel enabling low-level 
communication between the operating system and a 
network interface adapter.  Traditionally, network analysis 
tools (architectures) are composed of three major 
components: the BPF, LIBPCAP, and the client system as 
depicted in Fig. 1.   The major limitation exposed in this 
model exists between LIBPCAP and the client system.  As 
shown, no inherent functionality exists to aid the client 
system with the overhead of decoding and interpreting the 
raw byte encoded sequence that comprises a network 
packet.  Programmers are therefore left to deal with this in a 
completely proprietary fashion.  This is clearly a process 
that adds significant design and development overhead and 
often requires extensive programmer expertise.  Even 
worse, this is a development step that is repeated many 
times and in many different ways depending on issues such 
as time constraints and programmer experience.  More 
often than not, users and maintainers of such systems are 
network analysts who do not possess the necessary 
programming background to be effective maintainers as 
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such.  This results in a boundary that often keeps an analyst 
from exploring new ideas and directions. 
 

 
Fig 1.  Standard Packet Capture Architecture:  
LIBPCAP (WINPCAP) 

 
The system we have developed to address these issues is 
called Simplified Protocol Capture (SIMPCAP).  It is 
unique to the network analysis and software development 
communities for the following reasons. First, it is designed 
for legacy use with LIBPCAP, so that no alteration to 
current approaches is necessary; any code that is written 
with SIMPCAP can run side by side with any other code 
written to incorporate the LIBPCAP library. Second, 
decoding constructs are optimized and automated, requiring 
only minimal programming maintenance; it is designed 
with the analyst in mind.  Additionally, the architecture is 
designed for rapid introduction of new and unhandled 
protocols into the system; a few simple script-like changes 
are all that is necessary to expand the functionality of 
SIMPCAP to provide new protocol decodes and data to the 
client program.   This is essential to non-programmer 
analysts who are often under heavy time constraints.  
Protocol definition and handling details are statically kept 
within the system framework.  This allows clients to 
efficiently share a common protocol definition knowledge 
base and provides application independent protocol 
decoding functionality. In other words, protocol decoding 
constructs are portable among all clients and in many 
development environments.  Finally, the system exports a 
highly expressive C-language API (application 
programming interface) that maintains convenient robust 
access to decoded protocol state, as well as the inherited 



LIBPCAP capture functionality.  The constructs of the API 
are particularly convenient for development of next 
generation intrusion detection and anomaly detection 
systems that encompass a great deal of statistical analysis 
on protocol header data.     
 
Other researchers have recognized the deficiency in relying 
on client software to decode network protocols and have 
developed software applications that address aspects of the 
mentioned shortcomings.  These include, PYLIBPCAP [8], 
which essentially comprises a set of python scripts that 
provide packet decoding constructs and sufficient client 
access to decoded protocol content.  The LIBNET [9] 
system is a high-level API for constructing and injecting 
LIBPCAP packets.  It exports a portable interface for low 
level packet shaping, and shields the client from tedious 
low level details such as those associated with protocol 
handling and demultiplexing.  The System for Modular 
Analysis and Continuous Queries [10] provides a Dynamic 
Type System which uses polymorphic techniques to 
provide flexibility in extracting different packet types. 
The remaining sections of this paper are organized in the 
following manner:  Section 2 provides an overview of the 
Berkeley packet Filter (BPF) kernel device and the 
LIBPCAP capture system, followed by a brief description 
of the limitations of the client architecture model.  Sections 
3 and 4, respectively entail an overview of the SIMPCAP 
system and a detailed explanation of the system 
architecture.  Section 5 briefly describes the SIMPCAP role 
in a current research initiative called the Second Stage 
Intrusion Monitor (SSIM).  Section 6 summarizes 
SIMPCAP and provides a view of additional future 
directions for the package.      

II. STANDARD PACKET CAPTURE OVERVIEW 

A. BERKELEY PACKET FILTER (BPF) OVERVIEW 
As mentioned above, traditional network capture 
architectures are based on the LIBPCAP library and the 
Berkeley Packet Filter (BPF) code. The BPF is the low 
level capture device that provides raw access to data link 
layers in a protocol-independent fashion.  It is essentially a 
set of low level routines wrapped by C-language function 
calls to provide the client programmer with higher level 
system functionality for opening and managing optimized 
packet capture sessions.  The most attractive feature of the 
BPF is the filter machine on which its name is based.  This 
comprises an expressive instruction set for defining filters 
to instruct the capture device to retrieve all packets that 
match a user defined filter (template).  See the example 
illustration in Fig 2 [11].  Although the BPF is a highly 
efficient raw capture environment, it is generally not 
suitable for developing network capture applications unless 
unusually low-level access is a requirement. Managing a 
BPF capture session can be tedious in that it often involves 
a significant degree of interaction between user- and kernel-
level processes.  The client retrieves packets by performing 
reads directly into the kernel buffer space.  In addition, the 
BPF does not export a standard capture file format; there is 

no functionality for managing the raw streams and 
providing a structured output that can be conveniently 
stored or processed.  Live capture sessions can not be 
conveniently stored or ported to different tools for analysis.  

 
 

Fig. 2.  Example BPF Filter that accepts only IP 
packets between host 128.3.112.5 and 
128.3.112.35 

B.  LIBPCAP OVERVIEW 
LIBPCAP [4] is a high-level C language library that 
extends the BPF library constructs.  In particular, it 
provides convenient system functions for managing live 
and offline capture sessions, and for interacting with and 
retrieving individual packets from the BPF kernel space.  
The LIBPCAP capture file format provides a standard and 
efficient construct for handling offline capture sessions.  
Captures files are portable to a broad range of operating 
system platforms and provides convenient accessibility to 
any tool that conforms to the standard.  LIBPCAP further 
extends the functionality of the BPF filter constructs in 
allowing programmers to specify filters in a higher-level 
syntax (such as that used by tcpdump [1]) as shown in Fig. 
3.  In particular, LIBPCAP implements functions to 
compile the filter syntax to the native BPF instruction form.  
 

 
 

Fig. 3.  Example LIBPCAP filter to match the 
string ‘Quit’ in the TCP header. 

 
The LIBPCAP file format coupled with the BPF filter 
accessibility forms the heart of the functionality of many 
network analysis tools in use today, including tcpdump and 
Ethereal.  Although LIBPCAP does provide convenient 
access to packet data, there is no inherent functionality for 
decoding the protocol content encoded in the raw packet. 
Until the writing of this paper, this has been the full 
responsibility of the client, which is clearly depicted in the 
upper half of Fig. 1.  In fact, proprietary protocol decoding, 
interpretation of protocol content, and matching of such 
content to some form of template has been the basic 
mindset of many systems used for intrusion detection.  



C. LIMITATIONS OF THE CLIENT ARCHITECTURE 
MODEL 

The basic operation of the LIBPCAP architecture is to 
interact with the BPF kernel and provide seamless access to 
individualized packets.  The packet contents are, however, 
raw byte encoded.   Currently, there is no intrinsic support 
to provide convenient decoding functionality.  Therefore, 
client architectures are proprietary and often difficult to 
expand upon, particularly for defining and processing new 
and unhandled protocols.  Since the applications are 
proprietary, their extension to handle new and different 
protocol information is not guaranteed and can require 
extensive source code modification. Code level 
modifications often lead to serious architectural integrity 
risks.  Insufficient programmer expertise or too many 
disparate programmer modifications can lead to loss of 
robustness, erroneous runtime errors, degraded performance 
and even system compromises such as buffer overflows.  In 
terms of the sheer volume of data that may need to be 
analyzed by a client application, the framework for which 
the protocol content memory space is utilized by a client 
should be standardized and isolated from the overall system 
architecture; there is no such mechanism within the 
LIBPCAP and BPF arrangement.       

III. SIMPLIFIED PACKET CAPTURE (SIMPCAP) 
OVERVIEW 

SIMPCAP is a flexible protocol decoding system matched 
to a rich client-side API and designed for follow-on use 
with the standard packet capture system LIBPCAP.  Fig. 4 
compares the framework for packet capture and client 
interaction between the typical BPF/LIBPCAP approach 
(right side) and the modified SIMPCAP architecture (left 
side).  Recall from the previous discussion, LIBPCAP 
essentially delivers a raw byte encoded packet to the client.  
The primary objective of SIMPCAP is to isolate the 
complexities of defining and handling various protocols and 
to shield the client from such details, for the purposes of 
obtaining smaller, more robust and portable client designs.   

 
  

Fig. 4.  SIMPCAP code layer between LIBPCAP 
and client. 
 

This effectively alleviates the client from managing 
protocol decoding overhead, and allows for direct 
interaction with protocol field data, rather than the 
conventional tedious interaction with raw packets.   Note 
that SIMPCAP still maintains the full capture functionality 
as provided by LIBPCAP and the BPF; the “client” could 
be a simple pass-through application that just hands off the 
raw data directly to traditional packet processing 
applications. 
 
SIMPCAP also standardizes the procedure to implement 
new or modified protocols as illustrated in Fig. 5 (and 
covered in detail in the following sections).  This 
standardized approach helps ensure architectural integrity 
and significantly reduces requirements for software 
programmer expertise, as is often needed for maintaining or 
modifying conventional applications.  A more important 
aspect of this approach is the  ability to share a global 
protocol knowledge database.  The Protocol Definition 
Database (PDD), illustrated in the left-middle section of 
Fig. 4, contains all protocol definitions in the system.  All 
clients written to use SIMPCAP can use the most current 
PDD available and immediately have access to the new 
protocol definitions built up by the community.  
       

 
 
 Fig. 5.  Adding new protocols to SIMPCAP. 
 
To provide maximal flexibility for client-side applications, 
SIMPCAP provides access to protocol field state through a 
C language API as shown functionally in Fig. 6.  It enables 
both experienced and beginner programmers to take 
immediate advantage of the expressive constructs of the 
programming environment and combine them with 
SIMPCAP to achieve the optimized and powerful 
development requirements of next generation intrusion 
detection and anomaly detection systems. For instance, 
consider an intrusion detection system that relies more on 
heuristics and complex statistical analysis of protocol 
header data for raising alerts, rather than the conventional 
system approach that involves matching packet content to 
some sort of template or rule set to trigger an event.  The 
client-side programmer can work directly with the field 
characteristics of the packets, and let SIMPCAP figure out 
the lower-level steps necessary to gather the information 
and provide it to the client application. 
  



 
 

Fig. 6.  Application Programming Interface (API) 
overview. 

 
SIMPCAP uses efficient memory storage/retrieval 
techniques to maintain a workable user environment that 
does not scale linearly with the size of the capture file 
processed.  As packets are processed through SIMPCAP, 
the memory space is cleared and re-used as soon as the 
decoded information is passed on to the client application. 
       
It is important to re-emphasize that the SIMPCAP 
framework constitutes a wrapper for the LIBPCAP 
architecture.  Therefore, the raw encoded packet data, as 
well as the all of the LIBPCAP and BPF capture system 
functionality is available through the system API layer.  Not 
only does this maintain maximal flexibility, it provides a 
convenient environment to transition SIMPCAP constructs 
into currently available tools.  The motivation here would 
naturally be to enhance or replace the system architecture 
for expanded flexibility and functionality to meet next 
generation requirements (e.g. interpretation / handling for 
IPv6 [6]), as well as provide the foundation for a much 
richer set of protocol definitions that can be shared across 
disparate client applications while maintaining 
compatibility with current tools.  In essence, this provides a 
means to simplify the application architecture for new tools, 
keep the old tools, and begin building tools that address the 
analysis of packet data and not the processing of the packets 
themselves.    

IV. SIMPCAP ARCHITECTURE 
The SIMPCAP architecture model is designed to efficiently 
decode packets by individual layers corresponding 
(initially) to the TCP/IP [6] protocol suite.  The framework 
is comprised of four primary entities as depicted in Fig 7.  
They are as follows: an automated protocol decoding unit 
(PDU), the common packet abstract data type (ADT) that 
feeds the decoder unit from the SIMPCAP API, a protocol 
definition set (PDS) that defines the entities that are 
available to the decoder unit, and a protocol handler set 
(PHS) that determines the disposition of the packet entities 
that are processed by the decoder unit.  The PDS is 
comprised of four layer-specific protocol decoder units.  

 
 Fig. 7.  Detailed SIMPCAP architecture overview. 
 
Each is designed to work in unison to demultiplex each 
layer of the raw byte encoded packet.  The PDU will be 
further discussed in next section.  Each PDS/PHS set 
contains four distinct source code files that correspond to 
exactly one layer of the TCP/IP protocol suite as illustrated.  
Specifically, protocol definitions and handler functions are 
individually defined for the link layer, network layer, 
transport layer, and application layer.  An example 
implementation of the transport layer component of a new 
system protocol is illustrated in Fig. 5.  First, an appropriate 
name is chosen for the new protocol definition (here UDP).  
The C-code protocol definition (step 2) is built and added to 
the appropriate layer PDS file (here TRANSPORT), 
becoming part of the protocol definition set.  Then, a 
pointer reference to the protocol type definition is added to 
the appropriate section of the packet ADT for access via the 
API.  Finally, a handler for the protocol is included in the 
corresponding source code file of the PHS.  The PDU, 
using the PHS, is responsible for forwarding protocol 
references to the packet ADT as discussed in the following 
section.       
 

      

Fig. 8.  Packet ADT (abstract data type) – the 
.  
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As illustrated in Fig. 7 the packet ADT is common to all 
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primary user interface to the protocol field state
The layered protocol boundaries are segregated 
and no function call is needed to retrieve the fiel
state. 
 

layer specific entities for the PDU, PDS and PHS.  The 
packet ADT construct is sub structured to contain sectio

typedef struct _PACKET_ADT 
{ 
   struct pcap_pkthdr   pcap_hdr;        
 /* reference to PCAP header,  (timestamp, etc) */ 
   const u_char*        raw_packet;      
 /* reference to the raw packet as delivered by libpcap device */ 
   int                  frame_type;      
 /* 1 = ETHERNET (RFC 894)   2 = IEEE 802.3 (RFC 1024) */  
   LINK_LAYER           LINK;            
 /* access to link layer protocol break down */ 
   NETWORK_LAYER  NET;             
 /* access to network layer protocol break down*/    
   TRANSPORT_LAYER TRANSPORT;       
 /* access to transport layer protocol break down */ 
   MAINTENCE            MAINT;           
 /* access to maintence protocol (ICMP, IGMP) break down */ 
} PACKET; 



corresponding to each layer that comprises a TCP/IP 
packet.  Fig. 8 and Fig. 9 show code snippets of the A
format, structure and usage. 
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Fig. 9  Link Layer structure with references to the 
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Ethernet and IEEE 802.3 frame types. 

he system performs demultiplexing by incorporati
decoder unit for each respective TCP/IP layer into a 
common protocol decoder unit (PDU).  The process b
naturally with the link layer-specific constructs of the PDU. 
Using the PDS and the PHS, the PDU invokes the 
appropriate protocol hander which strips the link la
protocol from the raw byte sequence.  A reference is the
forwarded to the corresponding portion of the common 
packet ADT and the embedded link layer protocol is 
handed off to the network layer decoding constructs.  Thi
process is repeated until the entire raw byte encoded packet
is fully decoded as depicted in Fig. 10.  When the PDU 
execution is complete, the fully decoded packet contents
accessible through the respective sections of the API.     
       

 
 

Fig. 10.   Decoder Execution Flow. 

he PDU unit employs an innovative technique to carry out 

ayer-

ke the 
link layer VLT for instance, the internet protocol version 4 

 the 

ss 
 

 

o 
et 

d in 

CURRENT APPLICATIONS 
The SIMPCA
interface com ent project 

 at 

ient 
ket 

on is a 
ut 
 

 
 
T
the decoding process.  Each layer-specific decoder is 
implemented with a vector lookup table (VLT). Each l
specific VLT functions in essentially the same manner.  All 
index positions of the VLT are associated with the 
corresponding protocol identifier for that index.  Ta

(IPv4) [6] is an embedded link layer protocol.  It is 
identified by the 16-bit Ethernet frame type code 080016 = 
204810 [6].  Therefore, the index position of 204810 in
link layer VLT contains the memory address of the protocol 
handler function for IPv4.  Explicit reference to this vector 
location would therefore resolve to the invocation of the 
handler function for IPv4, and header contents would be 
stripped from the otherwise raw byte sequence. The proce
begins as the raw packet enters the link a layer decoder of
the PDU (refer to Fig. 10). Although the system is designed 
with consideration of handling multiple frame types, the 
current implementation is limited to Ethernet.  The 16-bit 
Ethernet type code is used as an index into the link layer 
VLT. This resolves to the appropriate handler invocation 
for the embedded link layer protocol encapsulated by the 
Ethernet frame.  If the embedded protocol is one that 
defines further embedding (such as IPv4 or IPv6 [6]) then 
the appropriate protocol field is used as index into the 
network layer VLT.  In the case of IPv4, the 8-bit protocol 
field is used as index to the network layer VLT.  This in
turn resolves to the appropriate invocation of the handler 
for whichever embedded network layer protocol is being 
carried (e.g. TCP, UDP, ICMP, etc.) [6].  As mentioned 
previously, each handler must include all code necessary t
forward a reference to the appropriate section of the pack
ADT.  This technique is attractive in that the PDU 
execution is begun by the initial reference to the link layer 
VLT.  All other components of the decoder are invoke
serial automated fashion as the protocols for each layer are 
demultiplexed. 

V. 

/* reference the LINK layer frame types:  ethernet and IEEE 802.3 */ 

_hdr;       
 stand er (RFC 894)      */ 

t, IP, RARP, ARP, etc)   

P framework provides the network packet 
ponent for a research and developm

currently being conducted by the Information Directorate
Air Force Research Laboratory, Rome Research Site, 
Defensive Information Warfare Branch (AFRL/IFGB). The 
Second Stage Intrusion Monitor (SSIM) is an initiative to 
provide innovative statistical and information theoretic 
techniques for next generation intrusion detection and 
anomaly detection systems.  The basis of the SSIM 
architecture is the SIMPCAP code, which allows the cl
application programmer to focus on the selection of pac
features and the analysis tools to apply to those features to 
determine the existence of anomalous behavior.  As 
depicted in basic SSIM architecture diagram of Figure 11, 
SIMPCAP is central to all applications (clients), 
conveniently alleviating protocol decoding and handling 
overhead.  Within this architecture, each applicati
component of the system that builds specific statistics abo
the underlying traffic content.  The statistics are combined
to build heuristics, visualize correlation among disparate 
events, and provide baseline input for the information 
theoretic processors. 
 

typedef struct _LINKLAYER 
{ 

THER_HDR*  ether  E
 /* reference to ard ethernet head
  ETHER_802_3_HDR* ieee_802_3_hdr;  
 /* reference to IEEE 802.3 (RFC 1042)  */ 
  ARP_HDR*   arp_hdr;         

 to arp / r /* reference arp */ 
;           const u_char*        payload

the fra /* reference to me payload */ 
  unsigned short       emb_p_type;      

nk la /* the type of li yer protocol presen
*/      

} LINK_LAYER; 



 
 

Fig. 11  Second Stage Intrusion Monitor (SSIM) 
Overview 

 
Client-side applications being designed for the SSIM 
include information theoretic processors comprised of 
entropy measures as devised by C. Tsallis and C. Shannon 
[7].  These techniques provide a baseline for modeling 
systems that contain long range correlation, long term 
memory, or contain inherently self similar constructs.  
SIMPCAP provides an efficient engine to deliver packet 
characteristics and information to these components for 
modeling network traffic anomalies.   
 
The applications are powerful in that they are not limited by 
individual network interfacing constructs.  Although the 
interface to the raw network content is maintained through 
SIMPCAP, applications as such need only provide explicit 
references to the protocol field contents.                                

VI. CONCLUSION AND FUTURE DIRECTIONS 
 In this paper we have presented a flexible and extensible 
protocol decoding engine and client-side API called 
SIMPCAP (Simplified Protocol Capture).  The system is 
designed as a convenient and efficient interface between 
LIBPCAP and client applications.  This provides the 
necessary constructs to isolate and remove protocol 
decoding requirements from the client application.  The 
decoding aspects are automated, optimized, and easily 
extensible for unhandled protocols, providing a convenient 
environment for non-programmer analysts to explore new 
ideas and directions. The system exports a flexible and 
highly expressive C-language API enabling users to 
efficiently combine a development-rich environment with 
network protocol analysis.  It also allows for a standardized 
approach to integrate community-developed protocol 
decoders into a shareable processing environment.  It 
currently runs on both Linux and Windows platforms.   
Two promising future directions for this project include a 
virtual file representation for relating multiple trace 
(capture) files based on user selectable criteria, and a packet 
capture file processor that is multi-threaded and can be used 
independently from the LIBPCAP library, allowing parallel 
processing of large packet captures.   
 
The virtual file representation will enable SIMPCAP to 
deliver a packet state that is representative of one or more 
related trace files through a seamless session.  Analysts 
typically perform some sort of file manipulation for 
extended capability or added convenience in normal 
processing.  There is often the desire to physically 
concatenate multiple capture files, to extract particular 
regions of files that are suspected to contain certain content, 
or to view and analyze portions of multiple files 

comparatively. Currently, a suite of open source data 
manipulation tools are used to carry out these basic 
functions, with the real data analysis being done in the 
analyst’s head.  As data volumes get larger, and their 
content more disparate, such functionality becomes more 
complex and even impractical.  A virtual file representation, 
however, constitutes a preprocessing stage that enables 
analysts to index one or more capture files conveniently, 
based on user criteria, and implement visualizations that 
provide meaningful output.  This extension to SIMPCAP 
will enable the client programmer to open and decode 
virtual files in much the same fashion as opening LIBPCAP 
trace files for post-mortem analysis.        
 
The multi-threaded packet-processing approach can be used 
to reduce the amount of dead time that analysts have to 
experience when processing large capture files.  Rather than 
use a linear LIBPCAP session to step through each packet 
in serial succession, the SIMPCAP engine and API (when 
combined with an appropriate metadata file) can provide a 
structured binary data set that can be operated on directly 
and parsed to multiple threads for rapid calculation and 
collection of information about the capture. 
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