
www.newnespress.com

 ZigBee, ZDO, and ZDP

 It’s all well and good to know how to transmit data to another node through an APSDE-
DATA.request, and what endpoints and groups are all about, but how does a node in a
ZigBee network decide which other node(s) in the network to talk to? How is the network
set up and maintained?

 ZigBee contains two sets of services for network commissioning and maintenance:

 ● The ZigBee Device Object (together with the ZigBee Device Profile)

 ● The ZigBee Cluster Library

 This chapter describes the ZigBee Device Object (ZDO) and the ZigBee Device Profile
(ZDP). The next chapter (Chapter 6) describes the ZigBee Cluster Library (ZCL).

 But first, before delving into ZDO, the real story behind the ZigBee name.

 “ Hey, Big Z! Come look at this! ” Ford Prefect shouted, staring down at his computer console.

 Zaphod Beeblebrox swiveled one of his two heads toward Ford, saying, “ Is it about me? ”

 “ Nah. More interesting than that. Take a look at the new Heart of Gold Mark II! Remember
the last one with that annoying personality that was always asking you to say ‘ please ’
before it would open a door, or giving you extra tidbits of information you didn’t ask for
every time you queried the computer? Well, in the Mark II they got rid of it. They replaced
it with some new wireless technology that automatically handles, well—everything! It
opens doors automatically, it makes the lights follow you around the ship, and quiets the
music down when you start talking, it says here, almost like it reads your mind. ”

 “ Yeah, baby, but I’m of two minds, and I can’t seem to get them to agree. For example, my
second head is sleeping right now, you see. ” In fact, Zaphod’s other head was snoring, loudly.

 “ Well, Big Z, I’m going to steal it, ” said Ford, matter-of-factly.

 “ What, my head? ” asked Zaphod.

 C H A P T E R 5

CH05-H8597.indd 207CH05-H8597.indd 207 7/26/2008 2:16:40 PM7/26/2008 2:16:40 PM

208 Chapter 5

www.newnespress.com

 “ The HoG Mark II. ”

 “ Not cool, ” quipped Zaphod. “ Already been done. I stole the first Heart of Gold,
remember? Anyway, how would you do it? ”

 “ Toss me another Pan Galactic Gargle Blaster, while you toss yours down. We’re hitching
a ride. ” Ford fingered his electronic thumb.

 “ You can’t hitch a ride on the most expensive ship in the Galaxy with just an electronic
thumb. It will never work. Impossible! ”

 “ That’s exactly why it is going to work, ” said Ford calmly. “ It’s just so amazingly
improbable that it’s nearly impossible. Probability drive. Remember? ”

 It’s a well-known fact to anyone who has ever read The Hitchhiker’s Guide to the Galaxy
that the only way to handle hitching a ride on a passing space ship and still keep your
mind was to be out-of-your-mind drunk when it happened. This fact was almost as well-
known as the use of the electronic thumb, the interstellar equivalent of extending your
thumb on the side of the road on 1960s Earth (a planet somewhere in the unpopular arm
of a small spiral galaxy). It was significantly less well-known that the Heart Of Gold, and
subsequently, the Heart Of Gold Mark II, achieved interstellar travel through the use of a
probability drive, a drive which ignored very likely and very constant things such as the
speed of light, and instead landed you, quite improbably, exactly where you didn’t even
know you wanted to go, and did it in almost no time at all.

 After a few more Pan Galactic Gargle Blasters (Ford stopped counting after three), Ford
Prefect said “ Big Z, are you ready? ” It actually sounded more like, “ BigZeeuready, ” what
with the slurring and all.

 “ And why are we stealing it, exactly? ” asked Zaphod, talking mostly to the floor, which
wasn’t talking back. Ford answered instead.

 “ We’re stealing it to get Trillian back. ”

 “ Ah. Trillian? ” queried Zaphod.

 “ Yes, Big Z, Trillian. Remember her? You picked her up from Earth many years ago. She
was with us on the last Heart of Gold. ”

 “ Ah. And what’s the name of that there ol ’ thingy in the Heart of Gold Mark II that
automatically handles, doors an ’ lights and well, everything? ” asked Zaphod.

 Ford, who was now also staring mostly at the floor, slurred “ Hmm, Zig B? What? ”

 “ Ah. ZigBee. Strange name for a technology, ZigBee. ”

 At that moment, the electronic thumb started beeping and blinking madly. For some reason,
engineers love to make gadgets beep and blink. In addition to beeping and blinking, the
electronic thumb did what it was actually designed to do and winked them out of existence,
to reappear right in the cargo hold somewhere inside the Heart of Gold Mark II.

CH05-H8597.indd 208CH05-H8597.indd 208 7/26/2008 2:16:40 PM7/26/2008 2:16:40 PM

ZigBee, ZDO, and ZDP 209

www.newnespress.com

 The ZigBee Device Object (ZDO, shown in Figure 5.1) is simply the application running
on endpoint 0 in every ZigBee device. (Remember, application endpoints are numbered
1 through 240.)

 This application, ZDO, keeps track of the state of the ZigBee device on and off the
network, and provides an interface to the ZigBee Device Profile (ZDP), a specialized
Application Profile (with profile ID 0x0000) for discovering, configuring, and
maintaining ZigBee devices and services on the network.

 As you can see from the figure, ZDO not only interacts with APS, but also interacts
directly with the network layer. ZDO controls the network layer, telling it when to form
or join a network, and when to leave, and provides the application interface to network
layer management services. For example, ZDO can be configured to continue attempting
to join a network until it is successful, or until a user-specified number-of-retries has
occurred before giving up, and informing the application of the join failure.

Physical (PHY) Layer

Security
Service

Provider

PLME-SAP

Medium Access Layer (MAC) Layer

MLME-SAP

Network (NWK) Layer

N
LM

E
-S

A
P

Application Support (APS) Sub-Layer

APSDE-SAP APSDE-SAP
A

P
S

S
E

-S
A

P

A
P

S
M

E
-S

A
P

Application Framework

Application
Object 240

[On Endpoint 240]

Application
Object 1

[On Endpoint 1]

Z
P

U
I

ZigBee Device
Object (ZDO)

[On Endpoint 0]

PD-SAP

MCPS-SAP

NLDE-SAP

N
LS

E
-S

A
P

APSDE-SAP

 Figure 5.1 : ZDO Is a ZigBee Application Object

CH05-H8597.indd 209CH05-H8597.indd 209 7/26/2008 2:16:40 PM7/26/2008 2:16:40 PM

210 Chapter 5

www.newnespress.com

 The over-the-air Application Profile supported by ZDO, called the ZigBee Device Profile
(ZDP), is no different than any other, and in most stacks is handled just like any other
application object on an endpoint. ZDP services are separated into client and server.
Client side services (also called requests), are always optional in ZigBee, but many of the
server side ZDP services (also called responses), are mandatory.

 Nearly every service follows the same pattern when used. A client device (the node which
is doing the asking) first makes a request. The server device then sends the response back
to the client device. The cluster number for the response is exactly the same as the cluster
number for the request, but with the high bit set. For example, the ZDP command IEEE_
addr_req is cluster 0x0001, and IEEE_addr_rsp is cluster 0x8001.

 It doesn’t matter how many hops the nodes are from each other. The nodes A and B could
be 10 hops away from each other, and the ZDP request/response mechanism will work
in exactly the same way, just as it does for applications sending data on an application
endpoint (see Figure 5.2).

 Many ZDP requests must be either explicitly unicast or broadcast. Others can unicast or
broadcast at the client node’s discretion (typically with different responses). If a ZDP
request is broadcast, only the node that has the requested information returns any data.
For example, NWK_Addr_req is broadcast, but only the node that matches the IEEE
address, provided in the request, responds.

 Every ZDP response starts with a status byte. If the particular optional service is not
supported by the receiving node, the status returned will be gZdoNotSupported_c (0x84).

 For sleeping devices, the parents of the device keep track of the IEEE and short address
of the child, and will respond for them. However, all other information about the sleeping
device, such as the list of active endpoints, are not recorded by the parent and must be
retrieved directly from the devices themselves. In Chapter 8, “ Commissioning ZigBee
Networks, ” I’ll discuss the means of commissioning sleeping devices.

 In this chapter, I’ve organized the ZDP services slightly differently than in the ZigBee
specification. For one thing, I’ve put the request and responses in the same section. The

A B

ZDP NWK_addr_req

ZDP NWK_addr_rsp

(Server)(Client)

 Figure 5.2 : ZDP Request and Response

CH05-H8597.indd 210CH05-H8597.indd 210 7/26/2008 2:16:40 PM7/26/2008 2:16:40 PM

ZigBee, ZDO, and ZDP 211

www.newnespress.com

ZigBee specification organizes the services numerically, so the request and responses are
many pages apart. Also, I’ve organized the ZDP services by usage; so, for example, all
the node-wide services are together.

 ZDP services include the following categories:

 ● Device discovery services

 ● Service discovery services

 ● Binding services

 ● Management services

 After discussing ZDP, I’ll discuss how applications interact with ZDO, including:

 ● Starting and stopping the network through ZDO

 ● ZDO and low power nodes

 5.1 Device Discovery
 The ZigBee Device Profile (ZDP) contains a set of commands for discovering various
aspects about nodes in the network. The ZigBee specification calls these “ device
discovery services, ” which can be confusing because endpoints contain device IDs which
really describe individual ZigBee applications running in that node. So, when you see
ZDP Device Discovery, think node-wide (not application/endpoint specific) services.

 Device discovery services have a few things in common:

 ● They provide additional information about a node.

 ● They are all optional from the client side, but some server side processing is
mandatory (a common subset among all ZigBee devices).

 ● They are node-wide, and do not represent any particular application, or
Application Profile residing on an endpoint in the node.

 The ZDP device discovery services are listed below in Table 5.1 . Notice that all the
ZDP services on the client side are optional. ZigBee does not require that a node be able
to send NWK_addr_req , for example. But on the server side of this equation (a node
receiving a NWK_addr_req and responding to it), the ZDP service is mandatory.

CH05-H8597.indd 211CH05-H8597.indd 211 7/26/2008 2:16:40 PM7/26/2008 2:16:40 PM

212 Chapter 5

www.newnespress.com

This makes sense if you think about how the service is used. A tool may want to collect
the IEEE (aka MAC) address of every node in the network (using IEEE_addr_req , for
example) so all nodes in the network must support the server side (IEEE_addr_rsp). But
only the tool needs to support the client side.

 What happens if a given client issues two ZDP requests in a row? How does the client
application know which response belongs to which request? Some stack vendors have
solved this problem by only allowing a single request to be issued at any one time. Other
stack vendors, such as Freescale, provide a transaction ID which correlates the request
with the response. This rolling 8-bit transaction ID is sent with each request, meaning, in
theory, that a single application could have up to 256 requests in flight at once. Normally,
however, an application makes one or two requests, and then waits for the response.

 In the Freescale ZigBee solution, all ZDP requests begin with the prefix ASL_ (for
example, ASL_NWK_addr_req()). Simply look up the particular ZDP request in the
table, or the ZigBee specification, and prefix it with ASL_ . Why ASL, and not ZDP?
ASL stands for Application Support Library, which is the prefix used for all optional
application-level commands in Freescale BeeStack.

 The response to a ZDP request may take some time to come back, because, perhaps, the
responding node may be many hops away. In a BeeStack application, this occurs through
a C callback function registered with Zdp_AppRegisterCallBack() .

 Each ZDP request in BeeStack requires a destination address, which may be unicast or
broadcast, as the ZigBee specification allows.

 Table 5.1: ZigBee Device Profile Device Discovery Services

 Device Discovery
Services

 Unicast (U), Broadcast
(B) or Either (U,B)

 Client Transmission
(Request)

 Server Processing
(Response)

 NWK_addr_req U,B O M

 IEEE_addr_req U O M

 Node_Desc_req U O M

 Power_Desc_req U O M

 Complex_Desc_req U O O

 User_Desc_req U O O

 User_Desc_set U O O

 Device_annce B O M

CH05-H8597.indd 212CH05-H8597.indd 212 7/26/2008 2:16:40 PM7/26/2008 2:16:40 PM

ZigBee, ZDO, and ZDP 213

www.newnespress.com

 void ASL_NWK_addr_req
 (
 zbCounter_t *pSequenceNumber,
 zbNwkAddr_t aDestAddress,
 zbIeeeAddr_t aIeeeAddr,
 uint8_t requestType,
 index_t startIndex
) ;

 One thing that is not always obvious with Freescale BeeStack (and this is true of other
stack vendors as well) is that optional ZDP services are not enabled by default. In fact,
they are compiled-out by default. Often ZigBee stacks run in systems that are very
limited by RAM and Flash (ROM), which means every byte can be precious. Services
that might not be used by the application are turned off to conserve space.

 To enable the optional ZDP services, enable either the client-side service, server-side
service, or both. For example, to enable both the server and client for NWK_addr_req ,
enable both gNWK_addr_req_d and gNWK_addr_rsp_d in BeeStack. All the ZDP
services, even the mandatory ones, can be enabled or disabled through Freescale BeeKit,
the graphical BeeStack configuration tool.

 Although Freescale BeeKit allows it, I don’t recommend disabling the mandatory ZDP
services unless your company controls all the nodes in the ZigBee network, and you are
willing to live with a (slightly) incompatible ZigBee stack. Certainly, the product cannot
be certified by ZigBee if the mandatory ZDP services are disabled.

 For some application profiles, such as Home Automation, some of the ZDP services
listed as optional by the ZigBee specification are mandatory for certain devices in that
profile. ZDP binding is a good example of this.

 Use ZDP to discover which nodes to talk to in a ZigBee network.

 Optional ZDP services may be mandatory in the application profile.

 Remember to enable the optional services if they are needed by a BeeStack application.

 5.1.1 NWK_addr_req and IEEE_addr_req

 Use ZDP network address request (NWK_addr_req) when you already know the MAC
address of a node (also called its IEEE or long address), but want to find its short, 16-bit
address on the network. This service request can be broadcast or unicast.

CH05-H8597.indd 213CH05-H8597.indd 213 7/26/2008 2:16:41 PM7/26/2008 2:16:41 PM

214 Chapter 5

www.newnespress.com

 For example, say the gateway in a particular ZigBee network (which may or may not
be on the ZigBee Coordinator) is known to be IEEE address 0x0050c237b0041234 .
Issue a NWK_addr_req and the gateway will respond with its short address on the
network.

 Unfortunately, there is no ZigBee-standard way to find nodes within a range of IEEE
addresses.

 IEEE_addr_req is the converse of NWK_addr_req (see Tables 5.2 and 5.3). It returns
the IEEE address of a node, given a 16-bit short address. This command is unicast to the
destination. The responses are exactly the same for the two commands, and the requests
are quite similar.

 Table 5.2 : NWK_addr_req/rsp

 NWK_addr_req NWK_addr_rsp

 typedef struct zbNwkAddrRequest_tag typedef struct zbExtendedDevResp_tag

 { {
 zbIeeeAddr_t aIeeeAddr; zbStatus_t iStatus;
 uint8_t requestType; zbIeeeAddr_t aIeeeAddrRemoteDev;
 zbIndex_t startIndex; zbNwkAddr_t aNwkAddrRemoteDev;
 } zbNwkAddrRequest_t; zbCounter_t numAssocDev;
 zbIndex_t startIndex;
 zbNwkAddr_t
 aNwkAddrAssocDevList[1];
 } zbExtendedDevResp_t;

 Table 5.3 : IEEE_addr_req/rsp

 IEEE_addr_req IEEE_addr_rsp

 typedef struct zbIeeeAddrRequest_tag typedef struct zbExtendedDevResp_tag
 { {
 zbNwkAddr_t aNwkAddrOfInterest; zbStatus_t iStatus;
 uint8_t requestType; zbIeeeAddr_t aIeeeAddrRemoteDev;
 zbIndex_t startIndex; zbNwkAddr_t aNwkAddrRemoteDev;
 } zbIeeeAddrRequest_t; zbCounter_t numAssocDev;
 zbIndex_t startIndex;
 zbNwkAddr_t aNwkAddrAssocDevList[1];
 } zbExtendedDevResp_t;

CH05-H8597.indd 214CH05-H8597.indd 214 7/26/2008 2:16:41 PM7/26/2008 2:16:41 PM

ZigBee, ZDO, and ZDP 215

www.newnespress.com

 Notice that the first byte of the response is a status byte. This will be 0x00 (success) if the
response is valid. If this contains an error code, then the rest of the information will not
be included in the response. Every ZDP response begins with a status code, so be sure to
check it in your applications before assuming that the rest of the information is valid.

 Both NWK_addr_req and IEEE_addr_req contain a requestType field. The request
type field affects whether the extended information is included in the response. Use
 requestType 0x00 to get only the IEEE and NWK address for one node. Use the
extended requestType 0x01 to get the information for the node and for all its children
as well. Remember, only routers will have children.

 This particular request is generally broadcast across the network. If the request is
broadcast, and the targeted NWK or IEEE address does not exist on the network, then no
over-the-air response is issued. The client application should set up a time-out to let itself
know that the node couldn’t be found, perhaps to try again at another time.

 Why unicast this command? It’s a good way to see if a particular device is the child of a
given parent. For example, say that you want to ensure that node XYZ is a child of the
room controller in a hotel room. Issue a unicast to that room controller (a ZigBee Router)
and it will respond either with an error code, or with the short address of the child.

 A start index is normally used if the response can’t fit in a single over-the-air packet
(a payload of about 80 bytes). This field isn’t actually needed in NWK_addr_req or
 IEEE_addr_req because the response will always fit, so always set it to 0.

 The example in this section, Example 5-1—ZDP NWK_addr_req , uses NWK_addr_req
to find the short address of a particular node, in this case the node with the IEEE address
of 0x0050c237b0040002 (see Figure 5.3). The application on the ZC sends a broadcast
across the network, and the node with proper IEEE address responds with its short
address.

ZCZC

ZR1ZR1 ZR2ZR2

NWK_addr_req NWK_addr_rsp

IEEE Addr :
0x0050c237b0040002

ZCZC

ZR2ZR2ZR1ZR1

 Figure 5.3: Example 5-1—ZDP NWK_addr_req

CH05-H8597.indd 215CH05-H8597.indd 215 7/26/2008 2:16:41 PM7/26/2008 2:16:41 PM

216 Chapter 5

www.newnespress.com

 The BeeKit solution file for this example, found in the directory “ Chapter05\Example
5-1-ZDP NWK_addr_req, ” contains three projects: one for an NCB ZigBee Coordinator
(ZC)—the node making the request, and two for ZigBee Routers (ZR)—one of which is
the node we’re looking for.

 To run the example, program the three boards (ZcNcb, Zr1Srb, Zr2Srb, respectively).
Next, form the network with the ZcNcb (ZigBee Coordinator) board by pressing SW1.
Join the other two nodes in any order, pressing SW1 on each of them. When the LEDs
have finished chasing each other, the nodes are on the network. Then, press SW2 on the
NCB board. The NCB will send out the NWK_addr_req and should display the short
address of the node we’re looking for. In the figure, this would be 0x143e .

 Try booting all the nodes, joining the routers in the opposite order (so that ZR2 boots
first). Notice the NwkAddr returned is now 0x0001 .

 Use NWK_addr_req and IEEE_addr_req to find nodes based on short or long address.

 NWK_addr_rsp and IEEE_addr_rsp populate the address map.

 5.1.2 ZigBee Descriptors

 ZigBee uses descriptors to describe a node and its properties, allowing other applications
running in the network to discover these properties over-the-air. Node-wide descriptors
include the node descriptor, the power descriptor, the complex descriptor, and the user
descriptor.

 Of these descriptors, I find the Node_Desc_req the most useful (see Table 5.4). The
results of this include the ZigBee node type (ZR, ZC, or ZED) and the manufacturer ID
(a 16-bit ZigBee assigned number that uniquely identifies the manufacturer of the
device).

 The node descriptor contains a variety of fields, including the node type of the device
(whether the node is a ZigBee Coordinator, Router, or End-Device), the manufacturer’s
code, whether the optional user and complex descriptors are present, and whether the
node supports fragmentation.

 Use this command when the application needs to know the manufacturer ID, whether the
destination node can support the optional fragmentation, or if any other optional service

CH05-H8597.indd 216CH05-H8597.indd 216 7/26/2008 2:16:41 PM7/26/2008 2:16:41 PM

ZigBee, ZDO, and ZDP 217

www.newnespress.com

is present. I rarely use this command in actual applications, except perhaps to find the
manufacturer ID. That can be useful if a particular application wants to use extended
commands only available from a particular manufacturer.

 The other descriptors include the power descriptor, which defines which power modes
this node supports, and the user descriptor, which contains a user definable string to
identify the location (such as living room or office). These descriptors are all optional
in the ZigBee spec. The user descriptor is settable over-the-air, the rest are only
gettable.

 Tables 5.5, 5.6, and 5.7 describe each of the other descriptors. By and large, these
descriptors (with the exception of the Node descriptor) have been supplanted by the
ZigBee Cluster Library (ZCL) Basic Cluster. If you are using a profile such as Home
Automation (HA), or Automatic Metering (AMI), which use the ZigBee Cluster Library,
use the Basic Cluster mechanism instead.

 Table 5.4 : Node Descriptor Request and Response

 Node_Desc_req Node_Desc_rsp

 typedef struct typedef struct
 zbNodeDescriptorRequest_tag zbNodeDescriptorResponse_tag
 { {
 zbNwkAddr_t aNwkAddrOfInterest; zbStatus_t status;
 } zbNodeDescriptorRequest_t; zbNwkAddr_t
 aNwkAddrOfInterest;
 zbNodeDescriptor_t nodeDescriptor;
 } zbNodeDescriptorResponse_t;

 typedef struct zbNodeDescriptor_tag
 {
 uint8_t logicalType;
 uint8_t apsFlagsAndFreqBand;
 uint8_t macCapFlags;
 uint8_t aManfCodeFlags[2];
 uint8_t maxBufferSize;
 uint8_t aMaxTransferSize[2];
 zbServerMask_t aServerMask;
 } zbNodeDescriptor_t;

CH05-H8597.indd 217CH05-H8597.indd 217 7/26/2008 2:16:41 PM7/26/2008 2:16:41 PM

218 Chapter 5

www.newnespress.com

 Table 5.7 : Complex Descriptor Request and Response

 Complex_Desc_req Complex_Desc_rsp

 void ASL_User_Desc_req typedef struct

 (zbComplexDescriptor_tag
 zbCounter_t *pSequenceNumber, {
 zbNwkAddr_t aDestAddress uint8_t fieldCount;
); uint8_t aLanguageAndCharSet[4];
 uint8_t aManufacturerName[6];
 uint8_t aModelName[6];
 uint8_t aSerialNumber[6];
 uint8_t aDeviceUrl[17];
 uint8_t aIcon[4];
 uint8_t aIconUrl[9];
 } zbComplexDescriptor_t;

 Table 5.6 : User Descriptor Request and Response

 User_Desc_req User_Desc_rsp

 void ASL_User_Desc_req typedef struct

 (zbUserDescriptorResponse_tag
 zbCounter_t *pSequenceNumber, {
 zbNwkAddr_t aDestAddress zbStatus_t status;
); zbNwkAddr_t aNwkAddrOfInterest;
 uint8_t aUserDescriptor[16];
 } zbUserDescriptorResponse_t;

 Table 5.5 : Power Descriptor Request and Response

 Power_Desc_req Power_Desc_rsp

 void ASL_Power_Desc_req typedef struct zbPowerDescriptor_tag

 ({
 zbCounter_t *pSequenceNumber, uint8_t currModeAndAvailSources;
 zbNwkAddr_t aDestAddress uint8_t currPowerSourceAndLevel;
); } zbPowerDescriptor_t;

 Descriptors describe the node.

 Use the ZigBee Cluster Library (ZCL) basic cluster
rather than the power, complex and user descriptors.

CH05-H8597.indd 218CH05-H8597.indd 218 7/26/2008 2:16:41 PM7/26/2008 2:16:41 PM

ZigBee, ZDO, and ZDP 219

www.newnespress.com

 5.1.3 Device Announce

 The ZDP Device_annce command is issued by the ZigBee stack, not by the applications.
Occasionally in a network, a device must change its short address while still on the network.
In Stack profile 0x01, this occurs when an end-device loses track of its parent and needs to
find a new one. In Stack profile 0x02, this occurs when an address conflict is detected.

 Device_annce can also occur if an end-device wants to tell its parent to start buffer
packets for it while it sleeps (called an RxOnIdle � FALSE device), or wants its parent
to quit buffering packets because the device won’t be sleeping anymore. (Perhaps it was
plugged into mains power.)

 All the Device_annce command accomplishes is to instruct any node in the network that
cares about this node to update its internal tables, such as the neighbor table, address
map, and binding table (see Table 5.8). The over-the-air device announce structure is
fairly simple: a short address, IEEE address, and MAC capabilities flags.

 The example in this section, Example 5-2 Device_annce , demonstrates device announce
occurring when a child changes to a new parent (see Figure 5.4). A node is set up to look

 Table 5.8 : Device Announce Fields

 Device_annce

 typedef struct zbEndDeviceAnnounce_tag

 {
 zbNwkAddr_t aNwkAddress;
 zbIeeeAddr_t aIeeeAddress;
 macCapabilityInfo_t capability;
 } zbEndDeviceAnnounce_t;

ZEDZED

HaOnOffSwitch
Node 0x0000

HaOnOffLight
Node 0x1430

ZRZR ZED

HaOnOffSwitch
Node 0x0000

HaOnOffLight
Node 0x796f

ZC ZC

ZR

 Figure 5.4 : Example 5-2—Device_annce

CH05-H8597.indd 219CH05-H8597.indd 219 7/26/2008 2:16:41 PM7/26/2008 2:16:41 PM

220 Chapter 5

www.newnespress.com

for a new parent after it has lost contact with its original parent for three polling periods
in a row. In the left portion of the figure, the ZED has a ZigBee router for a parent.
But for some reason (Okay, because I turned it off), the ZED loses contact with its parent.
The node then looks for a new parent, and finds the ZigBee Coordinator, shown on
the right.

 This same thing would happen if the ZED were, perhaps, a roaming remote control
device. The same thing could occur if something happened to the link, such as if a large
wall of metal or body of water was placed between the ZED and its parent.

 To run the example shown above, use the BeeKit solution found in the folder
 “ Chapter05\Example 5-2 Device_annce. ” This BeeKit solution contains three projects:
a ZcNcbSwitch, a ZrSrbRangeExtender, and a ZedSrbLight. Export the solution, and
import, compile, and download each project into their respective boards.

 The steps to see the demo (and produce a capture) are:

 1. Turn on Daintree to record on channel 25.

 2. Boot and form a network with the ZcNcbSwitch and ZrSrbRangeExtender
boards, by pressing SW1.

3. Turn off joining the ZcNcbSwitch by pressing SW2.

 4. Join the network with ZedSrbLight by pressing SW1.

 5. Bind the switch and light, by pressing SW3 (in any order) on both ZcNcbSwitch
and ZedSrbLight.

6. Go to Application (as opposed to Configuration) Mode on both light and switch,
by pressing and holding switch 1 (LSW1).

 7. Toggle the light, by pressing SW1 on the ZcNcbSwitch.

8. Force the light to move to a new parent, by turning off ZcSrbRangeExtender.

 9. Toggle the light again, by pressing SW1.

 Notice the ZcNcbSwitch knows where to find the light (at 0x796f), even though it has
moved (from 0x1430).

CH05-H8597.indd 220CH05-H8597.indd 220 7/26/2008 2:16:41 PM7/26/2008 2:16:41 PM

ZigBee, ZDO, and ZDP 221

www.newnespress.com

 To see this action over-the-air, take a look at the following excerpts from the Daintree
capture. First of all, notice that the switch (node 0x0000) is sending to the light (node
0x1430), which is a child of the range extender (node 0x0001):

 87 + 00:00:00.571 0x0000 0x0001 0x0000 0x1430 0x50 Zigbee APS Data
 HA:On/off
 88 + 00:00:00.001 IEEE 802.15.4
 Acknowledgment
 89 + 00:00:00.452 0x1430 0x0001 IEEE 802.15.4
 Command: Data Request
 90 + 00:00:00.001 IEEE 802.15.4
 Acknowledgment
 91 + 00:00:00.003 0x0001 0x1430 0x0000 0x1430 0x75 Zigbee APS Data
 HA:On/off

 Now, the child has lost track of its parent. So, it issues a rejoin request to join a new
parent. And then it announces via a broadcast its new short address to the network with
 Device_annce , called ZDP:EndDeviceAnnce:

 138 + 00:00:00.421 0x1430 0x0000 0x1430 0x0000 0x1a Zigbee NWK
 NWK Command: Rejoin Request
 139 + 00:00:00.001 IEEE 802.15.4
 Acknowledgment
 140 + 00:00:00.409 0x1430 0x0000 IEEE 802.15.4
 Command: Data Request
 141 + 00:00:00.001 IEEE 802.15.4
 Acknowledgment
 142 + 00:00:00.005 0x0000 0x1430 0x0000 0x1430 0x51 Zigbee NWK
 NWK Command: Rejoin Response
 143 + 00:00:00.002 IEEE 802.15.4
 Acknowledgment
 144 + 00:00:00.005 0x796f 0x0000 0x796f 0xffff 0x1b Zigbee APS Data
 ZDP:EndDeviceAnnce
 145 + 00:00:00.002 IEEE 802.15.4
 Acknowledgment
 146 + 00:00:00.018 0x0000 0xffff 0x796f 0xffff 0x1b Zigbee APS Data
 ZDP:EndDeviceAnnce

 Finally, notice that the ZcNcbSwitch still knows where to find the light. Instead of
sending to address 0x1430, it sends to address 0x796f, the light’s new short address:

 164 + 00:00:00.002 0x0000 0x796f 0x0000 0x796f 0x52 Zigbee APS Data
 HA:On/off

CH05-H8597.indd 221CH05-H8597.indd 221 7/26/2008 2:16:41 PM7/26/2008 2:16:41 PM

222 Chapter 5

www.newnespress.com

 Table 5.9: ZDP Service Discovery Services

 Service Discovery Services Client Transmission
(Request)

 Server Processing
(Response)

 Simple_Desc_req (unicast) O M

 Extended_Simple_Desc_req (unicast) O O

 Active_EP_req (unicast) O M

 Extended_Active_EP_req (unicast) O O

 Match_Desc_req (broadcast) O M

 System_Server_Discover_req O O

 Find_node_cache_req (broadcast) O O

 Discovery_Cache_req (unicast) O O

 Discovery_store_req (unicast) O O

 Node_Desc_store_req (unicast) O O

 Power_Desc_store_req (unicast) O O

 Active_EP_store_req (unicast) O O

 Simple_Desc_store_req (unicast) O O

 Remove_node_cache_req (unicast) O O

 One thing to be aware of: Device_annce is a broadcast, and every ZigBee network is
limited by the number of broadcasts it can sustain at any given time. Don’t design a
network where children need to move constantly or the network may be overloaded.

 5.2 Service Discovery
 In addition to the services related to devices, or nodes, ZDP also contains a variety
of standard services for querying the applications within those nodes (see Table 5.9).
As with the device discovery services, most of the ZDP service discovery services are
optional. Only a few service side responses are required.

 5.2.1 Discovering and Matching Endpoints

 Discovering application endpoints and the services they support is a common
commissioning step in ZigBee. Different manufacturers may choose different endpoints
for their applications. For example, a manufacturer of a switch (Leviton, perhaps) may
choose endpoint 3 for their switch. Philips may choose endpoint 8 for their light. So how
does an application which needs to bind this switch to the light find these endpoints?

CH05-H8597.indd 222CH05-H8597.indd 222 7/26/2008 2:16:41 PM7/26/2008 2:16:41 PM

ZigBee, ZDO, and ZDP 223

www.newnespress.com

 Table 5.10 : Active Endpoint Request and Response

 Active_EP_req Active_EP_rsp

 void ASL_Active_EP_req typedef struct zbActiveEpResponse_tag

 ({

 zbCounter_t *pSequenceNumber, zbStatus_t status;
 zbNwkAddr_t aDestAddress zbNwkAddr_t aNwkAddrOfInterest;
); zbCounter_t activeEpCount;

 zbEndPoint_t pActiveEpList[1];
 } zbActiveEpResponse_t;

 Table 5.11: Simple Descriptor Request and Response

 Simple_Desc_req Simple_Desc_rsp

 void ASL_Simple_Desc_req typedef struct zbSimpleDescriptor_tag
 ({
 zbCounter_t *pSequenceNumber, zbEndPoint_t endPoint;
 zbNwkAddr_t aDestAddress, zbProfileId_t aAppProfId;
 zbEndPoint_t endPoint zbDeviceId_t aAppDeviceId;
); uint8_t appDevVerAndFlag;

 zbCounter_t cNumInClusters;
 zbClusterId_t *pInClusterList;
 zbCounter_t cNumOutClusters;
 zbClusterId_t *pOutClusterList;
 } zbSimpleDescriptor_t;

 typedef struct
 zbSimpleDescriptorResponse_tag

 {
 zbStatus_t status;
 zbNwkAddr_t aNwkAddrOfInterest;
 zbSize_t length;
 zbSimpleDescriptor_t sSimpleDescriptor;
 } zbSimpleDescriptorResponse_t;

 ZDP can locate active endpoints through Active_EP_req (see Table 5.10). This
call returns a list of the active endpoints in a node. The application then calls
Simple_Desc_req , which returns a description of the endpoint (see Table 5.11). The
simple descriptor really should have been called the endpoint descriptor, as that is
the object it describes.

CH05-H8597.indd 223CH05-H8597.indd 223 7/26/2008 2:16:41 PM7/26/2008 2:16:41 PM

224 Chapter 5

www.newnespress.com

 The simple descriptor basically describes everything there is to know about the endpoint:
its Application Profile ID, and its list of endpoints, both input and output.

 The Extended_Simple_Desc_req and Extended_Active_EP_req were added in ZigBee
2007 in case the simple descriptor or active endpoint list were too large to fit into a
single packet. For example, assume that a node supports all 240 endpoints. Each active
endpoint returned in an Active_EP_req requires one byte. That’s at least 240 bytes, far
too large to fit into the 127 byte 802.1.54 PHY. Likewise, if the cluster list is too long, an
 Extended_Simple_Desc_req might be needed. Normally, however, the standard versions
are sufficient. It’s a rare ZigBee network that contains nodes with that many endpoints or
clusters on an endpoint.

 Match_Desc_req can be used to find a particular service anywhere across the network
(see Table 5.12). As input, it takes a simple descriptor, and as output it provides a
matching list of endpoints from any node that matches. It matches both profile ID and
input/output cluster lists. The profile ID must be the same, and at least one input must
match one output cluster, or vice versa. Any overlap will do. Think of it this way.

 Table 5.12: Match Descriptor Request

 Match_Desc_req Match_Desc_rsp

 typedef struct typedef struct
 zb SimpleDescriptor_tag zbMatchDescriptorResponse_tag
 { {
 zbEndPoint_t endPoint; zbStatus_t status;
 zbProfileId_t aAppProfId; zbNwkAddr_t aNwkAddrOfInterest;
 zbDeviceId_t aAppDeviceId; zbSize_t matchLength;
 uint8_t appDevVerAndFlag; zbEndPoint_t matchList[1];
 zbCounter_t cNumInClusters; } zbMatchDescriptorResponse_t;
 zbClusterId_t *pInClusterList;
 zbCounter_t cNumOutClusters;
 zbClusterId_t *pOutClusterList;
 } zbSimpleDescriptor_t;
 void ASL_MatchDescriptor_req
 (
 zbCounter_t *pSequenceNumber,
 zbNwkAddr_t aDestAddress,
 zbSimpleDescriptor_t
 *pSimpleDescriptor
);

CH05-H8597.indd 224CH05-H8597.indd 224 7/26/2008 2:16:41 PM7/26/2008 2:16:41 PM

ZigBee, ZDO, and ZDP 225

www.newnespress.com

A switch has an On/Off Cluster (0x0006) as an output. A light has an On/Off Cluster as
an input. They match. Two lights would not match.

 Match_Desc_req may be broadcast (with 0xfffd) or unicast. Here is a simple experiment
to cause a flurry of route requests and unicasts in a ZigBee network. Send out a
 Match_Desc_req with the Basic Cluster (0x0000) listed as an output cluster, on profile
ID 0x0104. Every node in the network on the Home Automation profile will respond.

 5.2.2 Backing Up and Caching Discovery Information

 ZigBee utilizes the concepts of backing up and also caching the discovery information.
This includes the following ZDP commands:

 ● System_Server_Discover_req

 ● Find_node_cache_req

 ● Discovery_Cache_req

 ● Discovery_store_req

 ● Node_Desc_store_req

 ● Power_Desc_store_req

 ● Active_EP_store_req

 ● Simple_Desc_store_req

 ● Remove_node_cache_req

 The concept is fairly simple. The System_Server_Discovery_req permits nodes in the
network to find the primary cache for everything from endpoints, to simple descriptors,
to node descriptors, assuming nodes in the network stored copies of their information on
the cache. Then, a commissioning tool or other node can retrieve the information. The
trouble with this is that no vendors actually implement the primary discovery cache in a
network. In fact, at the time of this writing, Freescale is the only vendor that has actually
implemented these optional ZDP commands in their stack.

 My advice is not to use them. Get the information directly from the nodes themselves. Or
do without.

 If you would like to use these commands anyway, here’s how to do it. Use a
 Discovery_store_req first to allocate the space on the discovery cache for the various

CH05-H8597.indd 225CH05-H8597.indd 225 7/26/2008 2:16:42 PM7/26/2008 2:16:42 PM

226 Chapter 5

www.newnespress.com

items, including endpoints and simple descriptors, as seen in Figure 5.5 . Then use the
various store commands (e.g., Simple_Desc_store_req) to actually store the data on the
cache. Using System_Server_Discovery_req , other nodes in the network can find the cache
and request the sleeping node’s information using commands such as Active_EP_req .

 5.3 Binding
 In Chapter 4, “ ZigBee Applications, ” you learned all about APS (local) binding. I’ll give
a quick refresher here, and then talk about ZDP binding.

 Binding provides a mechanism for attaching an endpoint on one node to one or more
endpoints on another node. Binding can even be destined for groups of nodes. Then,
when using APSDE-DATA.request, simply use the “ indirect ” addressing mode, and the
request will be sent to each endpoint or group listed in the local binding table.

 The binding table is smart, and keeps track of both the short (16-bit NwkAddr) and long
(IEEE) address of a node. If a destination device has changed its short address (either
due to a ZigBee End-Device moving from one parent to another in ZigBee stack profile
0x01, or due to a address conflict in ZigBee Pro), the binding table entry is updated
automatically to point to that new address (see Figure 5.6).

 As shown in Table 5.13 , if the local application sent application data using indirect mode
from endpoint 12, the packet would simply be dropped, as there is no source endpoint

A

Discovery_store_req

Store

Active_EP_store_req

Simple_Desc_store_req

Active_EP_req

NwkAddr of Interest �
Node A

B

 Figure 5.5 : Discovery_store_req

CH05-H8597.indd 226CH05-H8597.indd 226 7/26/2008 2:16:42 PM7/26/2008 2:16:42 PM

ZigBee, ZDO, and ZDP 227

www.newnespress.com

12 in the table. If the local application sent a APSDE-DATA.request using indirect mode
from endpoint 5, it would go to three destinations: node 0x1234 endpoint 12, broadcast to
group 0x9999, and to node 0x5678 endpoint 44.

 ZDP provides over-the-air binding services to complement the local APS binding
services. This allows a third-party tool (such as a remote control, or PC with a ZigBee
dongle) to connect one application to another. It’s easy to envision a drag-and-drop
interface to bind switches to lights throughout a house, an office, or a hotel.

 All ZDP binding services are optional. They are shown in Table 5.14 .

 Table 5.13: Sample Binding Table

 Src EP Destination Addr Addr/Grp Dst EP Cluster ID

 5 0x1234 A 12 0x0006

 6 0x796F A 240 0x0006

 5 0x9999 G -- 0x0006

 5 0x5678 A 44 0x0006

 Figure 5.6 : Binding Connects One Endpoint to One or More Other Endpoints

CH05-H8597.indd 227CH05-H8597.indd 227 7/26/2008 2:16:42 PM7/26/2008 2:16:42 PM

228 Chapter 5

www.newnespress.com

 End_Device_Bind_req (see Figure 5.7) uses an optional state machine on the ZigBee
Coordinator to bind or unbind two devices. This service can be useful in a “ press-the-
button-on-two-nodes-to-bind-them ” operation, useful on some Home Automation
products, but it’s not generally useful in most ZigBee networks. One of the things I don’t
like about this command is that if it returns success, the caller has no idea if the targets
were bound or unbound. It’s a toggle!

 The example in this section, Section 5-3 Binding , demonstrates a third-party node binding
a switch to a light over-the-air. Granted, it’s pretty simple, but it shows the concept of
ZigBee commissioning with a third-party tool.

 To run the example, simply compile and download the three targets (ZcNcbTool,
ZedSrbSwitch, andZrSrbLight) from the BeeKit solution, and boot them all. Press SW1
on all of them to join each node to the network. Go to Application Mode on all three
nodes by pressing and holding SW1 (long SW1). Press SW1 on the switch. Notice
nothing happens. Then press SW2 in the tool to bind the switch to the light. Now press
SW1 on the switch again and notice the light toggles.

 There is one thing about over-the-air binding that is not obvious. The ZDP bind
commands require an IEEE address, not a short address for the destination of the binding.
If a node receives a ZDP bind command and it doesn’t know about the destination
address, it will issue a ZDP NWK_Addr_req to find the node, because it actually needs
both long and short addresses to complete the operation.

 Table 5.14: ZDP Binding Services

 ZDP Binding Services Client Transmission
(Req)

 Server Processing
(Rsp)

 End_Device_Bind_req O O

 Bind_req O O

 Unbind_req O O

ZDP Bind_req

Tool

LightSwitch

 Figure 5.7: ZDP Bind Request

CH05-H8597.indd 228CH05-H8597.indd 228 7/26/2008 2:16:42 PM7/26/2008 2:16:42 PM

ZigBee, ZDO, and ZDP 229

www.newnespress.com

 5.4 ZDP Management Services
 The ZDP Management services are really handy optional services used for reading the
various tables contained within ZigBee nodes, and to request certain common actions (see
 Table 5.15).

 5.4.1 Network Discovery

 The ZDP command Mgmt_NWK_Disc_req was implemented both to support frequency
agility, which is the ability for the ZigBee network to change channels, and to help
prevent PAN ID conflicts. A managing application can determine remotely what networks
and nodes are in the vicinity of any node on the network.

 PAN ID conflict happens when one network grows toward another. Perhaps they were
both out of hearing range of each other when they started, and through chance happened
to pick the same PAN ID, such as 0x1234. Now they’ve grown over time, and are
beginning to overlap.

 Changing channels in ZigBee is a fairly catastrophic event, and not one to be undertaken
lightly. ZigBee is not a channel-hopping network, like Bluetooth™, for example.
Instead, ZigBee relies on its robust CSMA-CA and O-QPSK technologies to continue to
communicate even in noisy environments. But sometimes it’s just necessary to change
channels, and it would be a major hardship to tear down the network and rebuild it on
another channel. This is the sort of thing that might happen at a hospital. The wireless

 Table 5.15: ZDP Management Services

 Network Management Services Client Transmission
(Req)

 Server Processing
(Rsp)

 Mgmt_NWK_Disc_req (unicast) O O

 Mgmt_Lqi_req (unicast) O O

 Mgmt_Rtg _req (unicast) O O

 Mgmt_Bind_req (unicast) O O

 Mgmt_Leave_req (unicast) O O

 Mgmt_Direct_ Join_req (unicast) O O

 Mgmt_Permit_ Joining _req (unicast or
broadcast)

 O M

 Mgmt_Cache_req (unicast) O O

 Mgmt_NWK_Update_req (unicast) O O

CH05-H8597.indd 229CH05-H8597.indd 229 7/26/2008 2:16:42 PM7/26/2008 2:16:42 PM

networks in a hospital are very carefully managed, and they do not want other wireless
channels on the same frequency as their WiFi™ networks. If the WiFi network needed
to change channels for some reason, it’s possible the ZigBee network might have to
as well.

 The ZDP Mgmt_NWK_Disc_req command does exactly the same thing that ZDO
does locally, when it determines what networks are nearby. It sends out a beacon
request and reports the beacons that responded to a higher layer, that can then do
something intelligent. In this case, the “ higher layer ” just happens to be on a remote
managing node.

 5.4.2 Table Management Services

 ZDP contains services to read the various tables from remote ZigBee nodes. This can be
useful in diagnostics during commissioning, or even at run-time. For example, the routing
tables of various routers can be checked, and if one node in particular is always full while
the other routers are not, perhaps a choke-point has been detected in the network. Another
router may be needed in the vicinity.

 ZigBee Table Management Services in ZDP:

 ● Mgmt_Lqi_req—the neighbor table

 ● Mgmt_Rtg_req—the routing table

 ● Mgmt_Bind_req—the (optional) binding table

 Notice that there isn’t any way to set these tables directly over ZigBee. Of course, an
application specific cluster could be written to do this, but the proper way is to use the
various other commands available that populate these tables. The binding table, for
instance, is populated or cleared using the ZDP-Bind and ZDP-Unbind commands.

 These tables can be quite large. To accommodate this, ZigBee allows them to be read
from a starting index. For example, to read the entire neighbor table, use Mgmt_Lqi_req
with a starting index of 0 to begin. Then, after it returns five or so entries, send another
 Mgmt_Lqi_req with a starting index of 5. That does mean that the operation is not
always atomic, and can look strange if something has changed between the previous
request and the next one.

 The ZDP table requests and responses are listed in Tables 5.16, 5.17, and 5.18 .

230 Chapter 5

www.newnespress.com

CH05-H8597.indd 230CH05-H8597.indd 230 7/26/2008 2:16:42 PM7/26/2008 2:16:42 PM

 Table 5.16: Management Neighbor Table Request

 Mgmt_Lqi_req Mgmt_Lqi_rsp

 void ASL_Mgmt_Lqi_req typedef struct zbNeighborTableList_tag
 ({
 zbCounter_t *pSequenceNumber, zbIeeeAddr_t aExtendedPanId;
 zbNwkAddr_t aDestAddress, zbIeeeAddr_t aExtendedAddr;
 index_t index zbNwkAddr_t aNetworkAddr;
); uint8_t deviceProperty;
 bool_t permitJoining;
 uint8_t depth;
 uint8_t lqi;
 } zbNeighborTableList_t;
 typedef struct zbMgmtLqiResponse_tag
 {
 zbStatus_t status;
 zbCounter_t neighbourTableEntries;
 zbIndex_t startIndex;
 zbCounter_t neighbourTableListCount;
 zbNeighborTableList_t neighbourTableList[1];
 } zbMgmtLqiResponse_t;

 Table 5.17: Management Routing Table Request

 Mgmt_Rtg_req Mgmt_Rtg_rsp

 void ASL_Mgmt_Rtg _req typedef struct routingTableList_tag
 ({
 zbCounter_t *pSequenceNumber, zbNwkAddr_t aDestinationAddress;
 zbNwkAddr_t aDestAddress, uint8_t status;
 index_t index zbNwkAddr_t aNextHopAddress;
); } routingTableList_t;

 typedef struct
 zbMgmtRtgResponse_tag
 {
 zbStatus_t status;
 zbCounter_t routingTableEntries;
 index_t startIndex;
 zbCounter_t routingTableListCount;
 routingTableList_t routingTableList[1];
 } zbMgmtRtgResponse_t;

www.newnespress.com

CH05-H8597.indd 231CH05-H8597.indd 231 7/26/2008 2:16:42 PM7/26/2008 2:16:42 PM

232 Chapter 5

www.newnespress.com

 Table 5.18 : Management Binding Table Request

 Mgmt_Bind_req Mgmt_Bind_rsp

 void ASL_Mgmt_Bind_req typedef struct zbApsmeBindReq_tag {
 (zbIeeeAddr_t aSrcAddr;
 zbCounter_t *pSequenceNumber, zbEndPoint_t srcEndPoint;
 zbNwkAddr_t aDestAddress, zbClusterId_t aClusterId;
 index_t index zbAddrMode_t dstAddrMode;
); zbIeeeAddr_t aDstAddr;
 zbEndPoint_t dstEndPoint;
 } zbApsmeBindReq_t;
 typedef struct zbMgmtBindResponse_tag {
 zbStatus_t status;
 zbCounter_t bindingTableEntries;
 zbIndex_t startIndex;
 zbCounter_t bindingTableListCount;
 zbApsmeBindEntry_t
 aBindingTableList[1];
 } zbMgmtBindResponse_t;

 Don’t confuse Mgmt_Bind_req (which retrieves a remote binding table) and Bind_req
(which binds a remote node to another node).

 5.4.3 Informing Other Nodes to Leave the Network

 One of the other interesting things ZDP can do is to tell other nodes to leave the network.
Why would you do this? Sometimes, such as when using the Commissioning Cluster
from the ZigBee Cluster Library, a node might be commissioned with certain values on
a commissioning network, and then told to go join a different network where it will do
its work. Imagine a handheld device that an installer uses to make sure all of the lights,
switches, thermostats, etc., are all functioning properly in each hotel room, before moving
on to the next. Use Mgmt_leave_req for this purpose.

 Mgmt_Direct_join_req is not used much. It’s easier to simply use the network rejoin
command, available through ZDO.

 Mgmt_permit_joining_req can be very useful for disabling joining all throughout the
network. Typically, this is the last step when commissioning a network. It closes it down
to prevent other nodes getting on the network without permission.

CH05-H8597.indd 232CH05-H8597.indd 232 7/26/2008 2:16:42 PM7/26/2008 2:16:42 PM

ZigBee, ZDO, and ZDP 233

www.newnespress.com

 5.5 Starting and Stopping ZigBee with ZDO
 ZDO is the local-state machine that controls the state of the ZigBee node on and off the
network. When a node boots up, it does not necessarily join a network right away. It may
go into low-power mode, and wait for a button-press, or some other event that causes the
node to decide it needs to network.

 The Freescale platform uses a function called ZDO_Start() to join a node to the network.
 ZDO_Start() can start with any of the following options:

 ● gStartWithOutNvm_c

 ● gStartAssociationRejoinWithNvm_c

 ● gStartNwkRejoinWithNvm_c

 ● gStartSilentRejoinWithNvm_c

 Starting without non-volatile memory (NVM) ensures that the node does not use anything
it remembers from the last time it was booted and joined a network. Association join
(or rejoin) uses the MAC association commands to join the network. Rejoin with NVM
rejoins the network using the same PAN and channel selected previously. The node
may get a new short address. The silent rejoin is very useful when nodes are reset after
a battery change, or after a mains-powered network has reset after a power outage. The
nodes do not actually say anything over the air, they simply start up and are capable of
routing in a few tens of milliseconds.

 To leave the network, Freescale uses one of two functions:

 ● ZDO_Stop()

 ● ZDO_Leave()

 Stop leaves the network silently. Leave informs the node’s parent so that the parent’s
internal tables can be cleaned up.

 The example in this section, Example 5-4 ZDO , forces a node to leave one network
and to rejoin the other. This operation is done fairly frequently in ZigBee network
commissioning. A node doesn’t know anything about the network it joins, other than the
IEEE address of the parent it joined. Many times a ZigBee node needs to know more
before deciding to remain on that network. It may, for example, query the network for a
particular service.

CH05-H8597.indd 233CH05-H8597.indd 233 7/26/2008 2:16:42 PM7/26/2008 2:16:42 PM

234 Chapter 5

www.newnespress.com

 In this example, the NCB board will attempt to join (randomly) one of the SRB boards.
If it does, it will ask the SRB whether it supports the On/Off Cluster. If not, it will leave
that network and attempt to join another. It continues doing this until it finds an On/Off
Cluster that responds, and in this case, the light turns on.

 Which of the networks issues the beacon response first is random, so the actual over-the-
air capture may vary until the node finds the right parent.

 5.6 ZDO, ZigBee, and Low Power
 One of the most interesting aspects of ZigBee is the ability of nodes in a ZigBee
network to last, not hours, not days, but for years on battery power. In fact, it’s normal
for a sleeping ZigBee device to last the shelf life of a couple of AA batteries (about
five to seven years). Consider Figure 5.8 . The ZigBee routers (in gray) and the ZigBee
Coordinator (in black) are typically mains-powered. The ZigBee End Devices (in white)
are ZigBee node types, which can sleep.

 ZigBee End Devices can sleep, because they do not route. That is why they are called end
devices: the route stops here. Notice the end devices in the figure below (for example,
node 25) only have one connection to the ZigBee Network: the end-device’s parent. The
routers must have at least two connections. In reality, it’s likely that all the routers in
this house floor plan can all hear each other, but to simplify the figure, only some of the
possible routes are shown.

0

25

33

63

22

1 29

43

19

2

44

3

 Figure 5.8 : ZigBee End Devices Do Not Route

CH05-H8597.indd 234CH05-H8597.indd 234 7/26/2008 2:16:42 PM7/26/2008 2:16:42 PM

ZigBee, ZDO, and ZDP 235

www.newnespress.com

 ZigBee is an asynchronous protocol. That is, a node may choose to transmit at any time.
This makes sense when you think about how ZigBee is used. A light switch (let’s use
node 25 again, for example), can wake up and send a command to turn on the lights any
time a user flips the switch. Or a factory automation system might need to send an alarm
immediately. That is why routers must be awake all the time and ready to route a message.

 Within the ZigBee Alliance, work is being done on an all-battery powered network for
use in situations where latency doesn’t matter, but eliminating mains-powered devices
does, such as in a vineyard, or another agricultural setting. It doesn’t matter if the
temperature or moisture content is communicated now, or two minutes later. It would
matter if the lights didn’t turn on for two minutes! At the time of this writing, that work
has not made it into any official ZigBee specifications.

 So, let’s go back to the example above. Someone flips a battery-powered ZigBee light
switch. The switch causes an interrupt which wakes the CPU, which in turn wakes the
radio. Once the system is fully powered (we’re talking approximately a millisecond, here)
the ZigBee End Device sends the command to turn the set of lights it controls on or off,
and then it goes immediately back to sleep. Immediately is a relative term, so I’ll go into
the exact sequence of events with calculations, in a bit.

 So what happens if you send the end-device a message while it is asleep? How does
that end device receive it? That’s where the special parent-child relationship comes in.
In a ZigBee network, the parent will actually buffer messages for the sleeping child,
delivering them when it wakes up.

 However, the message is not buffered forever. The MAC generally buffers messages
for about seven seconds. Some ZigBee stacks, like Freescale, are limited to this MAC
timeout. Others are not. There is one other thing to note. If a given parent has many
sleeping children, and many messages to deliver, the messages may time out before they
are all delivered to the sleeping children. Generally, sleeping devices should wake up and
communicate with some node in the network periodically, if the sleeping node can be
configured or is to normally receive packets. Otherwise, just treat the end device as a
low-power command, or data initiator. It wakes up when it wants, transmits data, then
sleeps again.

 One common question I get is this, “ Can the radio wake the CPU upon receiving a valid
ZigBee packet? ” The answer is “ Yes it can, but it doesn’t make sense for a low-powered
system. ” If the radio is awake enough to decode a signal, it is awake. That means it is
consuming full power, somewhere in the neighborhood of 20–23 mA, which means the
batteries won’t last a very long time (days at best).

CH05-H8597.indd 235CH05-H8597.indd 235 7/26/2008 2:16:43 PM7/26/2008 2:16:43 PM

236 Chapter 5

www.newnespress.com

 Table 5.19 : ZigBee Battery Life Calculator

 Battery capacity (mAh) 1900 1900 � 2 AA batteries

 Supply efficiency (%) 100%

 System capacity (mAh) 1900

 Tx current (Radio) (mAh) 34 MC13193

 Application payload size (bytes) 10 add 18–30 bytes for security

 Packet frequency(s) 15

 Tx duration per packet (ms) 1.31 With security

 Tx packets per day 5760 Calculated from packet frequency

 PA current (or other Tx on) (mA) 0

 Rx current (Radio) (mA) 37 MC13193

 Rx duration per packet (ms) 10 Waits for ACK (and msg) from
parent

 Rx packets per day 5760

 LNA current (or other Rx on) (mA) 0

 Radio sleep current (mA) 0.002 MC13193 sleep current

 MCU active current (mA) 14 HCS08 Stop Mode 3

 MCU sleep current (mA) 0.001

 MCU activity time in addition to radio (%) 20%

 MCU total activity time 120%

 MCU with AtoD on current 0

 MCU active time for AtoD per sample (ms) 0

 Number of samples per day 0

 Calculated radio duty cycle 0.08%

 Capacity used per day (mAh/day) 1.04

 Battery life in days 1828

 Battery life in years 5.0

 Table 5.19 is a battery calculator, and is included in Excel form on-line. As you can see
from the calculations, it’s very possible for a ZigBee node to last an entire five years on a
pair of AA batteries.

 Identifying all the power consumers in a system is not always easy. Some are obvious.
A power regulator, consuming power to reduce the voltage from 9 volts down to 3, or that

CH05-H8597.indd 236CH05-H8597.indd 236 7/26/2008 2:16:43 PM7/26/2008 2:16:43 PM

ZigBee, ZDO, and ZDP 237

www.newnespress.com

TTL to RS2332 serial chip, or that blazing LED, is easy to figure out. But other power
consumers are not so obvious.

 For example, consider the Freescale HCS08GT60 microcontroller used both in the
Freescale system-in-package MC13213, and in the two-chip solution with the MC13193
radio. This microcontroller uses the same core as the GB60, a part with significantly
more GPIO pins brought out on the package. In the core on the GT60, the one used for
the ZigBee nodes, those extra pins which aren’t brought out on the smaller package are
floating, and must be initialized to low output to prevent power consumption. If you don’t
turn them off, you’ll wonder why your board is not achieving that 1.9 μ A low-power sleep
that the radio and MCU can.

 The final example in this chapter is a low-power On/Off Switch. One thing that’s very
important to note in the Freescale solution is that it won’t go into deep sleep unless all
application timers have been stopped.

 To run the demo, compile and download the ZcNcbOnOffLight and ZedPanOnOffSwitch.
The “ PAN ” stands for the Panasonic PAN802154HAR. This board, pictured in Figure 5.9 ,
can achieve 2 μ A while asleep. Press the button, and the board wakes up, sends a toggle
command to the light, and then goes back to sleep.

 Figure 5.9 : The Panasonic PAN802154HAR Low-Power ZigBee Board

CH05-H8597.indd 237CH05-H8597.indd 237 7/26/2008 2:16:43 PM7/26/2008 2:16:43 PM

238 Chapter 5

www.newnespress.com

 Alternately, use the Freescale SRB boards. The SRBs, while they are nice development
boards, cannot achieve true low power under software control. This isn’t due to the radio
and MCU, but because other power consumers on the SRB board, such as the power
regulator and USB chip, cannot be shut off.

 When planning your project, always plan much more time than you think for low power.
It seems so simple in concept, but there are always gotchas. One example is that the BDM
debugger, used to debug programs in the Freescale environment, doesn’t function once
the MCU goes into low power. Low power is always more difficult than you think.

 ZigBee provides no low power API. The API is always vendor-specific.

 ZigBee End-Devices are the only nodes in a ZigBee network that achieve long battery life.

CH05-H8597.indd 238CH05-H8597.indd 238 7/26/2008 2:16:43 PM7/26/2008 2:16:43 PM

	Chapter 5: ZigBee, ZDO, and ZDP
	5.1 Device Discovery
	5.2 Service Discovery
	5.3 Binding
	5.4 ZDP Management Services
	5.5 Starting and Stopping ZigBee with ZDO
	5.6 ZDO, ZigBee, and Low Power

