
LS-SCTP: a bandwidth aggregation technique

for stream control transmission protocolq

Ahmed Abd El Al*, Tarek Saadawi, Myung Lee

Department of Electrical Engineering, City College and Graduate Center of City University of New York, New York, NY 10031, USA

Abstract

Stream Control Transmission Protocol (SCTP) specifications utilize the multiple paths capabilities between the sender and receiver for

retransmission of lost data chunks and as a backup in case of primary path failure. Under normal conditions, all data chunks are sent on the

primary path chosen by the SCTP user during the transport connection initiation. In this paper, we address in detail various aspects related to

extending and engineering SCTP in order to utilize the available paths for simultaneous transmission of data chunks, while maintaining the

SCTP congestion control on each path so as to ensure fair integration with other traffic in the network. The extended SCTP, referred to as

Load-Sharing SCTP (LS-SCTP), is able to aggregate the bandwidth of all the active transmission paths between the communicating

endpoints. LS-SCTP monitors the paths, and accordingly it chooses the paths that are suitable for load sharing. LS-SCTP retransmission

mechanism accelerates the delivery of missing data to the receiver in order to prevent stalling the transport connection while waiting for

missing data chunks. Simulation results show that LS-SCTP is extremely beneficial for networks with limited bandwidth, high loss rate and

failure prone links.

q 2004 Elsevier B.V. All rights reserved.

Keywords: Stream control transmission protocol; Bandwidth aggregation; Multi-homing

1. Introduction

For many years SS7 has been the dominant bearer of

signaling traffic for telecommunication networks, but

recently many proprietary solutions for transporting signal-

ing traffic over IP have appeared. This approach promises

tighter integration with Voice over IP (VoIP) solutions and

ultimately the possibility of a common core network

capable to transport signaling and media traffic. Driven by

industry interest and general agreement on the unsuitability

of TCP and UDP for signaling transport, the IETF Signaling

Transport (SIGTRAN) group was formed in 1999 to

standardize a suitable transport protocol for signaling traffic

over IP. Stream control transmission protocol (SCTP) was

the result of this work, and it was recently published as RFC

2960 [1] by the Internet society.

SCTP is a reliable, message-oriented data transport

protocol that supports multiple streams within a single

transport layer connection, an ‘association’ in SCTP

terminology, and hosts with multiple network interfaces

(multi-homed hosts). These properties make SCTP more

suitable for signaling transport, as well as for providing

transport benefits to other applications requiring additional

performance and reliability. SCTP features will be

described in detail in Section 3.

SCTP support for multi-homed hosts is intended to

provide communication reliability for the hosts engaged in

the association. Initially, two interfaces, one at each host,

are chosen to form the primary path that is used for

transmission of the data units, ‘data chunks’ in SCTP

terminology. The other interfaces, which form the second-

ary paths, are only used for retransmission of lost data

chunks or as a backup for the primary path. This means that

although these paths exist, they are only utilized for

Computer Communications 27 (2004) 1012–1024

www.elsevier.com/locate/comcom

0140-3664/$ - see front matter q 2004 Elsevier B.V. All rights reserved.

doi:10.1016/j.comcom.2004.01.021

q Prepared through collaborative participation in the Communications

and Networks Consortium sponsored by US Army Research Laboratory

under the Collaborative Technology Alliance Program, Cooperative

Agreement DAAD19-01-2-0011.
* Corresponding author. Tel.: þ1-212-650-7158; fax: þ1-212-650-8249.

E-mail addresses: amabdal@cs.com (A. Abd El Al); saadawi@ee1s0.

engr.ccny.cuny.edu (T. Saadawi); mjlee@ees1s0.engr.ccny.cuny.edu (M.

Lee).

http://www.elsevier.com/locate/comcom

retransmission or for failure recovery. In this paper, we

propose extending SCTP to utilize the available paths for

simultaneous transmission of data chunks, i.e. load sharing,

while maintaining the SCTP congestion control on each

path, in order to ensure fair integration with other traffic in

the network. We believe that this form of bandwidth

aggregation is extremely beneficial for networks with

limited bandwidth and high loss rates. In order to aggregate

the available bandwidth, taking in account the differences in

the characteristics of the paths, in terms of bandwidth,

latency and loss rates, we propose a separation between the

association congestion control and flow control. In our

SCTP extension, which we refer to as Load Sharing-SCTP

(LS-SCTP), the congestion control is performed on a path

basis, while the flow control is on association basis.

Standard SCTP does not separate between the flow and

the congestion control, as both mechanisms work together

on a single path. As the failure of a transmission path or the

increase in the path loss rate can affect the throughput of the

whole association, LS-SCTP monitors the paths, and

accordingly it dynamically determines the paths that are

suitable for load sharing. In addition, LS-SCTP retransmis-

sion mechanism accelerates the delivery of missing data to

the receiver in order to prevent stalling the association,

while the receiver is waiting for a missing data chunk. As

will be shown in our performance study, in Section 5, that

these features make LS-SCTP robust to the variations in the

characteristics of the transmission paths.

During the association initialization, LS-SCTP allows

the user to enable/disable the load sharing capability, as well

as controlling the number of interfaces that can be used

simultaneously for load sharing. This feature is important

for battery-powered hosts, as it enables the LS-SCTP user to

conserve the battery power by controlling the simultaneous

use of the interfaces.

This paper is organized as follows. Section 2 provides a

review for similar works in bandwidth aggregation. Section 3

presents a quick overview on SCTP features and the

differences between SCTP and TCP. Section 4 describes in

detail LS-SCTP design. Section 5 provides a performance

study for LS-SCTP. Finally, Section 6 concludes the paper.

2. Related work

The idea of resource aggregation in order to obtain higher

performance has been used in different areas in the

computer and communication fields. Ref. [2] introduces a

striping technique for the disk subsystem, which is now a

key aspect in Redundant arrays of inexpensive disks (RAID)

architectures. In Ref. [3], authors provide an overview on

the use of resource aggregation in the network subsystem,

and introduce an evaluation criteria to judge the benefits

provided from the resource aggregation in terms of: latency

and buffering requirements, skew tolerance, scalability and

complexity and finally the maximum aggregate bandwidth

that can be supported. Using these criteria, they examined

and evaluated resource aggregation at each layer of the

protocol stack.

An example of link layer bandwidth aggregation is

Bellcore’s (currently Telcordia) effort, for their Aurora

testbed [4], to obtain the equivalent bandwidth of an

STS-12c (620 Mbps) by using four STS-3cs (155 Mbps)

aggregated together into a trunk group. ATM cells are

stripped across the links in an order determined by the trunk

control algorithm. The algorithm places idle and active cells

that allows the receiver to determine the order in which the

cells were placed on the trunk group. References [5] and [6]

introduce Inverse Multiplexing, which is a standard

application-transparent method to provide higher end-to-

end bandwidth by splitting traffic across multiple physical

channels, creating a single logical channel. Most inverse

multiplexing implementations assume physical transport

mechanisms with constant bit rates and stable channel

characteristics, in terms of bandwidth, latency and loss

rates, such as found in circuit switched networks. For this

reason they use a Round Robin approach to assign data

fragments to the available channels. Round robin data

striping is simple and can provide perfect fair distribution of

fragments on the available channels when the fragments are

roughly of the same size, and when the channels

characteristics are similar and stable. Variations in the

characteristics of any particular channel can have cata-

strophic impact on the performance of the whole bundle.

On the transport level, [7] introduces a bandwidth

aggregation technique for mobile hosts called Reliable

multiplexing transport protocol (R-MTP). R-MTP is a rate

based transport protocol capable of multiplexing data from a

single application data stream across multiple network

interfaces. R-MTP tracks packets inter-arrival for discrimi-

nation between congestion based and transmission based

losses. A packet-pair probing mechanism is used for

estimating the available bandwidth over each channel.

Inaccuracies in the bandwidth estimation, due to the fast

variation in the network condition, can lead to out of order

arrival of packets at the receiver and, in some cases, to re-

sequencing buffer overflow. In addition, packet-pair probing

mechanisms do not provide an accurate bandwidth estimate

in networks with deep buffering.

On the application level, several work exist that use

multiple TCP connections (sockets) in order to achieve

higher throughput [8–10]. In Ref. [9] authors introduce a

modified version of FTP, called XFTP, that use multiple

TCP connections in order to simulate a virtual TCP

connection with a large receiver window size. Limited

receiver window size can throttle the TCP throughput on

large delay-bandwidth product channels, such as satellite

channels. In order for the XFTP to transfer a file using n

connections, it divides the file into m 8 kbytes records

(where m ^ n). The sender of the file sends each record over

a connection that has enough resources to accept the record.

This is determined by using disjunctive wait (select) and

A. Abd El Al et al. / Computer Communications 27 (2004) 1012–1024 1013

non-blocking writes. Ref. [10] describes a library of

Application program interfaces (APIs) called Parallel

Sockets (PSockets). The library allows developers of data

intensive computing applications, such as data mining,

running on a high-speed networks to stripe their data on

different open sockets. As in Ref. [9], the application level

striping and re-sequencing mechanisms initially target to

relieve the network administrators from end-to-end window

size tuning, by virtually increasing the receiver window size

through aggregating the window sizes of multiple sockets.

In Ref. [11], authors present an analytical model for the

throughput of parallel sockets. The model is used to find the

optimal number of sockets that can achieve higher

throughput for the applications and at the same time do

not lead to network congestion.

Implementing the bandwidth aggregation on the appli-

cation level increases the complexity of the applications, as

they are responsible for striping and re-sequencing the data.

In addition, application level bandwidth aggregation

mechanisms stripe the data on the different sockets without

taking in consideration the differences in the paths

characteristics. This can lead to a situation where a slow

path can drag down the throughput of the whole bundle.

3. SCTP overview

SCTP is the fundamental member of a family of

protocols designed by the SIGTRAN group to allow SS7

messages to be transported over an unreliable IP infrastruc-

ture [12,13]. In SCTP, data transfer between two hosts takes

place in the context of an association, as shown in Fig. 1.

All data transferred between the hosts is encapsulated in

SCTP packets. SCTP packet contains a common header and

a sequence of structures called ‘chunks’. The common

header has source and destination port numbers to allow

multiplexing of different SCTP associations at the same

address, a 32-bit verification tag that guards against

insertion of out-of-date or false messages into the SCTP

association, and a 32-bit checksum for end-to-end error

detection, which is more robust than the 16 bit checksum of

TCP and UDP. The chunks can be either control chunks,

such as selective acknowledgement (SACK) chunks, or data

chunks. The layout of a chunk is shown in Fig. 2. Each

chunk includes chunk type, chunk flags, chunk length and

chunk value. Control chunks incorporate different flags and

parameters depending on the chunk type. To improve

transport efficiency, SCTP allows bundling of multiple data

and control chunks in a single packet.

The data chunk is the container for the user data

transferred in SCTP. Its format is shown in Fig. 3. Data

chunks incorporate flags to control the segmentation and

reassembly, in addition to the following parameters:

Transmission sequence number (TSN), Stream ID, Stream

sequence number (SSN), and Payload protocol identifier.

Stream ID and SSN are used for multistreaming support,

while the Payload Protocol Identifier is included for future

flexibility.

Data chunks arriving at the SCTP receiver are acknowl-

edged by transmitting SCTP packet with a SACK control

chunk. The format of SACK chunk is shown in Fig. 4.

During association initialization the SCTP end points

exchange the size of their receiver window (an indication of

the available space in their inbound buffer) and the initial

TSN of the data chunks to be exchanged during the

association.

SCTP has multiple features that make it different from

TCP. The most attractive features are multi-streaming and

multi-homing support.

Multi-streaming allows data to be partitioned into

multiple streams that have the property of being indepen-

dently delivered to the application at the receiver. This

means that the loss of a data chunk that belongs to a certain

stream will only affect the delivery within that stream,

without affecting the delivery of other streams. This feature

prevents head-of-line blocking problem that can occur

in TCP, as TCP supports only a single data stream. Within

Fig. 1. SCTP association.

Fig. 2. The layout of a chunk.

Fig. 3. The Data chunk.

A. Abd El Al et al. / Computer Communications 27 (2004) 1012–10241014

the association, the stream ID parameter in the data chunk

header determines the stream to which the data chunk

belongs. Normally, data chunks are ordered within a stream

using the SSN, although transfer of unordered data is also

supported.

Multi-homing allows a single SCTP endpoint to support

multiple IP addresses. In its current form, SCTP multi-

homing support is only for redundancy. A single address is

chosen as the ‘primary’ address, which is the destination

address for all the data chunks during normal transmission.

Retransmitted data chunks use the alternate address(es), to

improve the probability of reaching the remote endpoint.

Continues failure to send to the primary address ultimately

results in the decision to transmit all data chunks to an

alternate destination address until the primary address

becomes reachable again.

SCTP includes mechanisms for path and peer monitor-

ing. An SCTP instance monitors all the transmission paths

to the peer instance of an association. To this end, Heartbeat

control chunks are sent over all the idle paths, which are

paths that are not currently used for data chunks

transmission, regardless whether they are active or inactive.

Each Heartbeat chunk has to be acknowledged by a

Heartbeat-Ack chunk. A path is considered active if it has

been used in the recent past to transmit an SCTP chunk that

has been acknowledged by the peer. If transmissions on a

certain path fail repeatedly more than a certain configurable

limit, Path.Max.Retrans, the path is regarded as inactive.

The number of events in which Heartbeats were not

acknowledged within a certain time or retransmission

occurred are counted on a per association basis. When a

certain configurable limit, Association.Max.Retrans, is

exceeded the peer endpoint is considered unreachable and

the association terminated.

SCTP congestion control is an amalgamation of current

best practice for TCP implementations with extensions to

deal with multi-homing aspect of SCTP and modifications

due to the message rather than stream-based nature of the

protocol [14]. The SCTP standard specifies an adaptive

sliding window control with adapted versions of the well

known TCP slow-start, congestion avoidance, fast retrans-

mit and fast recovery mechanisms [15]. SCTP congestion

control mechanisms include two major differences with the

equivalent TCP mechanisms. First, the direct dependence of

SCTP on the number of bytes acknowledged, rather than the

number of acknowledgements received, to increase the

congestion window. Secondly, the implicit dependence of

SCTP on SACK messages for acknowledging the received

data chunks.

4. LS-SCTP design

In this section we present our extension for SCTP

(LS-SCTP) to support aggregating the available bandwidth

of the transmission paths between the transport endpoints.

First, we will discuss the reasons that make SCTP, in its

current form, not suitable for load sharing. Then we present

solutions to make SCTP load sharing capable.

Our motivations to extend SCTP for load sharing are:

(i) The increase in the number of multi-homed devices.

For instance, laptops commonly come with a built in

infrared and multiple PCMCIA slots, allowing for

multiple communication cards.

(ii) By aggregating the available bandwidth, applications

can gain higher throughput, as will be shown in Section

5, which is beneficial for networks with limited

bandwidth and high error rate.

(iii) SCTP is more attractive for load sharing than other

transport protocols, such as TCP, due to the fact that

SCTP inherently support multi-homing, which allows

a single SCTP connection to be able to deal with

different interfaces. This has the following advan-

tages: (1) It reduces the overhead of initiating and

terminating multiple transport connections, (2) There

is no need for an upper layer to glue the transport

connections and control the data striping, (3)

Facilitates the access to the congestion control

information of the paths, which allows intelligent

data striping [16].

(iv) SCTP attractive features, which are shown to be

beneficial for different applications [17].

4.1. Is SCTP suitable for load sharing?

Transmission paths can have different characteristics, in

terms of round trip time and congestion state Conse-

quently, if SCTP simply stripes the load on the different

paths, data chunks can arrive out of order at the receiver.

Out of order arrival of data chunks can unnecessary initiate

SACKs transmission to the sender, to report the gaps in the

TSN, which increase the network load. In addition, the

arrival of four SACKs, as oppose to 3 SACKs in TCP, at

the sender reporting the same TSNs will be interpreted

Fig. 4. The SACK chunk.

A. Abd El Al et al. / Computer Communications 27 (2004) 1012–1024 1015

as loss of the TSNs. This can lead to unnecessary

retransmission of data chunks, as well as halving the

congestion window (cwnd) of the path on which the TSNs

were originally sent. Similar problem was reported in Ref.

[18]. To illustrate this problem, we assume two multi-

homed hosts A and B: Host A has interfaces A1 and A2, and

host B has interfaces B1 and B2; and all the four addresses

are bound to an SCTP association. For one of several

possible reasons (e.g. path diversity, policy based routing),

we assume that the data traffic from A to B1 is routed

through A1; and from A to B2 is routed through A2: Fig. 5

shows the timeline of events. The vertical lines represent

interfaces B1; A1, A2 and B2: Each arrow depicts the

departure of a packet from one interface and its arrival at

the destination. The labels on the arrows are either SCTP

TSNs or labels STCðTGS 2 TGEÞ which represents a packet

carrying SACK chunk with cumulative ACK TC; and gap

ACK for TSNs TGS through TGE: C1 is the cwnd at A for

destination B1; and C2 is the cwnd at A for destination B2:

C1 and C2 are denoted in terms of path maximum transfer

units (PMTUs). We assume that the round trip time (RTT)

to B1 . 2* RTT to B2; and at a certain time the cwnd of

both destination addresses is 4 PMTU. Also we assume

that data chunks with TSNs 21–24 were sent to B1; and

data chunks with TSNs 25–28 were sent to B2: Because of

the difference in the RTTs, data chunks sent to B2 arrive

earlier to the receiver end point initiating 4 SACKs that

report the loss of TSNs 21–24, this will falsely lead the

sender to retransmit TSNs 21–24 to B2; and cutting the

cwnd of B1 to one half of its value.

Techniques that depend on the differentiation between

the transmission and retransmission in order to avoid

congestion window overgrowth [18], as well as techniques

for adapting the fast transmission threshold with the degree

of reordering in the network [19,20], can partially solve the

problem. Although these techniques adapts the sender with

the reordering in the network, the receiver is still not able to

differentiate between the reordering that is due to the

difference in the delay of the paths and that is due to packet

losses. Thus the receiver continues to generate SACKs to

report the out of order arrival of the data chunks, which

consume the network resources. Delaying the generation of

the SACK from the receiver, in order to account the out of

order arrival of data chunks due to the difference in the paths

delays, will work fine in the case of lossless networks, but in

the case of networks with losses, the delayed SACK will

delay reporting packet losses to the sender, which can

eventually timeout.

Our goal is to design a bandwidth aggregation technique

in SCTP that has the following features:

1. Robust to the variations in the paths characteristics

without, unnecessary, consuming the network resources.

2. Adaptable to the failure/restoration of the paths within

the association.

3. Backward compatible with standard SCTP.

4.2. Architectural overview of LS-SCTP

LS-SCTP is based on the idea of separating the

association flow control from congestion control. In

LS-SCTP, the flow control is on association basis, thus

both the sender and receiver endpoints use their association

buffer to hold the data chunks regardless their transmission

paths. On the other hand, congestion control is performed on

per path basis, thus the sender has a separate congestion

control for each path, and these congestion control

mechanisms can be used simultaneously for data chunks

transmission. This provides the sender endpoint with a

virtual congestion window (cwnd) size equal to the

aggregate of the cwnds of all the paths within the association

that are used for load sharing. Standard SCTP does not

separate between the flow and congestion control mechan-

isms, as it was designed to deal with a single path, and both

mechanisms use the same transmission sequence number. In

LS-SCTP, the congestion control on each path is following

RFC2960 [1], so as to insure fair integration with other

traffic in the network. An architectural view of LS-SCTP is

shown in Fig. 6 [21].

In order to separate the flow control from the congestion

control, LS-SCTP uses two different sequence numbers.

Fig. 5. Effect of distributing SCTP packets on different paths.

Fig. 6. Architectural view of LS-SCTP.

A. Abd El Al et al. / Computer Communications 27 (2004) 1012–10241016

The first sequence number is the association sequence

number (ASN), that is a per association sequence number,

and is used to reorder the received data chunks at the receiver

association buffer, regardless the path from which they have

been received. The second sequence number is the path

sequence number (PSN), which is a per path sequence

number, used for reliability and congestion control on each

path. In addition, LS-SCTP continues to use the stream

sequence number (SSN) for ordering the data chunks within

the association streams.

To support load sharing, we defined a new data chunk

‘load sharing data chunk’ by adding two new parameters to

the standard SCTP data chunk. The first parameter is a 4 bits

Path Identifier (PID), which identifies the path used for the

data chunk transmission. The second parameter is 12 bits

PSN, which is a monotonically increasing sequence number

for the data chunks transmitted over the same path. Fig. 7

shows the load sharing data chunk.

For acknowledging the received data chunks, LS-SCTP

uses a new SACK chunk ‘Load Sharing SACK (LS-SACK)’

shown in Fig. 8.

As data chunks are received and buffered in the receiver

association buffer, the receiver endpoint decrements the

Advertised receiver window credit (a_rwnd), which rep-

resents the available space in the buffer, by the number of

bytes received and buffered. As data chunks are delivered to

the upper layer application (ULA) and released from the

receiver association buffer, the receiver increments the

a_rwnd by the number of bytes delivered to the upper layer.

When the receiver sends a LS-SACK, it places the current

value of a_rwnd into the a_rwnd field, and it sets the

Cumulative ASN ACK, which represents the highest ASN

delivered to the ULA, taking into account that the data

sender will not retransmit data chunks that have been

acknowledged via the Cumulative ASN ACK (i.e. will drop

them from its association buffer). In addition, the receiver

sets the Cumulative PSN, which represents the highest

in-sequence PSN received on the path over which the

LS-SACK will be sent, as well as the missing and duplicate

PSNs. The receiver of the LS-SACK uses the PSN related

values to update the congestion control variables of the

corresponding path.

As the LS-SACKs are received on all the paths that are

used for load sharing within the association, and due to the

different delays of these paths, LS-SACKs can be received

out of order. Out of order arrival of the LS-SACKs can

cause the sender to develop an incorrect view of the

receiver’s buffer space, as the LS-SACK includes the

receiver’s free buffer space at the time it was sent. For this

reason, the LS-SACK includes a time stamp field that is

used by the sender of the LS-SACK to indicate when it was

sent. The receiver of the LS-SACKs uses the Time Stamps

to determine their order. The receiver of an old LS-SACK,

does not update its view of the peer’s free buffer space,

based on the values in the LS-SACK, but on the other hand,

it uses the remaining LS-SACK information to update

the congestion control variables for the path from which the

LS-SACK was received.

The congestion control variables for each path, including

congestion window size (cwnd), slow-start threshold

(ssthresh), Round Trip Time (RTT), retransmission time

out (RTO), outstanding data count, and partial bytes

acknowledged (partial_bytes_acked), are maintained in a

data structure called the ‘Virtual Buffer’. In addition, the

virtual buffer keeps track of the PSNs sent or received on

each path. The receiver window size (rwnd), which

represents the available space in the peer’s association

buffer, as well as the total outstanding data count, are kept

on an association basis.

Figs. 9 and 10 illustrate the inbound and outbound

message passage in LS-SCTP.

As the sender’s application layer passes a data packet to

the LS-SCTP, the data packet is fragmented, if required, and

assigned an in-sequence ASN as well as a Stream ID and

SSN, before it is placed in the association buffer. The path

assignment module selects the transmission path for the data

chunks and accordingly the PID and PSN are assigned to

each data chunk. Before passing the data chunks to the

network layer, for transmission on the selected paths, the

LS-SCTP can bundle the data chunks with control chunks

for transport efficiency [1]. At the receiver, data chunks are

unbundled from control chunks, and the congestion control

Fig. 7. Load sharing data chunk.

Fig. 8. Load sharing SACK chunk.

A. Abd El Al et al. / Computer Communications 27 (2004) 1012–1024 1017

variables, in the virtual buffer corresponding to the path

from which the data chunks were received, are updated.

Then the data chunks are placed in the association buffer,

until they are delivered to the application, in the order of the

stream they belong to.

4.3. Path assignment module

The path assignment module in LS-SCTP, is responsible

for assigning transmission paths for the data chunks.

The assignment can be based on a criteria requested by

the ULA during the association initiation. For example, the

ULA may request the LS-SCTP to assign different data

streams, within the association, to different paths. As far as

the data chunks in the different streams are ordered by their

SSN and delivered independently to the ULA, there will not

be any problem at the receiver if the streams are assigned to

different paths. The ULA request may also be in the form of

quality of service (QoS) requirement for each stream. Based

on the QoS requirements for the streams, as well

Fig. 9. Outbound message passage in LS-SCTP.

Fig. 10. Inbound message passage in LS-SCTP.

A. Abd El Al et al. / Computer Communications 27 (2004) 1012–10241018

as the current characteristic of the transmission paths, the

path assignment module can dynamically change the

streams paths assignment, to fulfill the streams QoS. If no

assignment criteria were specified, the Path Assignment

module assigns the data chunks based on the bandwidth

availability of the paths.

Round robin path assignment mechanism, similar to

that used in Ref. [6], is not suitable when the transmission

paths have different and variable characteristics. Such

mechanisms can limit the throughput of the association to

the throughput of the slowest path. Thus it is important

that the path assignment be based on the ratio of the

bandwidth of the paths within the association.

LS-SCTP uses the current congestion window (cwnd) of

each path, as an estimate of its current bandwidth-delay

product [22]. The path assignment module assigns data

chunks to the paths according to the cwnd/RTT of each path.

After assigning a data chunk to a path, the data chunk is

assigned the PID that identifies the path, as well as an in-

sequence PSN.

At the receiver, the data chunks do not compete on

association buffer, as the sender controls the amount of data

injected on all the paths, based on its view of the free space

in the receiver’s association buffer (rwnd), as well as the

total outstanding data on all the active paths. In order to

compensate the differences in the paths RTT, the minimum

receiver association buffer should be based on the

summation of the bandwidth of all the paths and the

maximum RTT [7], as shown in Eq. (1).

Minimum receiver association buffer

¼
XN

i

Bi

 !
RTTmax ð1Þ

where, Bi is the bandwidth of path i;N is the number of

active path within the association and RTTMax is the

maximum RTT.

To improve the probability that a retransmitted data

chunk(s) reaches the peer endpoint, the path assignment

module retransmits the data chunk(s) on a different path

than the one used for the original transmission. Delaying the

arrival of a data chunk can stall the association, because data

chunks that were sent on other paths will be queued at the

receiver waiting the missing chunk. At a certain point the

receiver’s association buffer space will limit the sender from

sending more data chunks, until it receives the missing

chunk. The PSN that was assigned to the data chunk(s) on

the original path is returned to the PSN pool of this path, and

can be used for new data chunk(s). The retransmitted data

chunk(s) will be assigned PID and PSN on the retransmis-

sion path. In addition, the outstanding data counts on the old

and new paths are adjusted according to the size of the

retransmitted data chunk(s).

Similarly, when time-out occurs on one of the active

paths within the association, the path assignment module

assigns the timed-out data chunks to different paths than

the one they were originally timed-out on, that have

enough capacity to transmit them. On the contrary of

standard SCTP, that uses a new data chunk for probing the

timed-out path, the Path Assignment module assigns a

copy of one of the retransmitted data chunks for probing

the path. The reason behind this, that there is a probability

that the timed-out path can continue to fail, which delays

the re-transmission of the new data chunk until the path

time out again. Mean while the receiver buffer will start to

fill up with data chunks, following the delayed one, that are

received from other active paths within the association, and

this can eventually lead the whole association to stall. The

situation can be worse if the path fails for a long period. As

the RTO of a path increases exponentially with consecutive

time-outs, the association can repeatedly stall for expo-

nentially increasing periods, as will be shown in Section 5.

This can continue until either the path recovers or it is

marked as inactive by the Path Monitor, as will be

described in Section 4.4.

In a wired domain it is possible that multiple paths can be

sharing the same bottleneck. This makes an LS-SCTP

association that is using these paths more aggressive, to

other flows passing through the bottleneck, than a single

SCTP association. One solution to this problem is to use

schemes similar to that described in Ref. [23] in order to

detect the shared bottleneck between the paths. If it can thus

be inferred that more than one path within the association

are sharing a bottleneck, only one of them is considered for

load sharing. Also approaches like [16] can be employed

which allows an ensemble of concurrent flows to share the

bandwidth at intermediate nodes and obtain consistent

performance, without adversely affecting other network

flows.

4.4. Path monitoring

As LS-SCTP utilizes multiple paths for transmission, a

failure of a single path, or the increase in a path loss rate can

affect the throughput of the whole association. For this

reason, LS-SCTP includes a path monitoring mechanism

referred to as the “Path Monitor” that is responsible for

updating the active paths list, which includes all the paths

that can be used for load sharing. The Path Monitor is not

only monitoring the availability of the paths but also

monitoring their quality, in terms of loss rate, delay, etc. It

can update the active paths list based on a network feedback,

if available, regarding the failure/recovery of paths within

the association. In addition, the Path Monitor removes a

path from the active paths list when the number of

consecutive retransmission time-outs on the path exceeds

Path.Max.Retrans, which is set to 5, or when the path

quality deteriorate to a limit that can affect the performance

of the whole association. Currently, we are using a

reasonable default threshold for the average loss rate on

each path, and basing the path membership in the active

A. Abd El Al et al. / Computer Communications 27 (2004) 1012–1024 1019

paths list on the threshold value. Inactive paths remain as a

part of the association, and the sender keeps monitoring

them through Heartbeat control chunks. As soon as a path

recovers, the Path Monitor adds it again to the active paths

list. As will be shown in the experimental results, this

technique prevents stalling the association while waiting for

a missing data chunk.

In SCTP the end point monitors an inactive path i by

sending a Heartbeat chunk every Hi seconds, which is

determined using the following formula:

Hi ¼ RTO:Initial þ HB:Interval £ ð1 þ dÞ ð2Þ

where RTO.Initial is the initial RTO, HB.Interval is a

configurable parameter to control the Heartbeat chunks

generation rate, and d is random value between 20.5 and

0.5 designed to add some jitter into the timing of each

individual Heartbeat. RFC2960 [1] recommends

RTO.Initial ¼ 5 s, HB.Interval ¼ 30 s. These values were

recommended in SCTP, as it only considers the alternative

paths between the sender and receiver for retransmission of

lost data chunks or as a backup for the primary path. But as

LS-SCTP is considering using all the paths within the

association for simultaneous transmission of data chunks, it

is important for LS-SCTP to detect the recovery of the

inactive paths as soon as possible. For this reason, we

recommend using short HB.Interval, in order to increase the

probing rate for the inactive paths.

4.5. Fragmentation and reassembly

The sender should track the association Path MTU

(PMTU), which is the smallest MTU discovered for all of

the peer’s destination addresses When fragmenting mess-

ages into multiple parts, the association PMTU is used to

calculate the size of each fragment. This allows retransmis-

sions to be seamlessly sent to an alternate address, without

encountering IP fragmentation. In addition, LS-SCTP

sender assigns all the fragments of a given message to the

same path, so as to ensure that the message fragments will

be received in order at the receiver. This reduces the time

required to reassemble the original message. The sender

endpoint assigns the same ASN and SSN to each of the data

chunks in the fragments series. After assigning the

fragments data chunks to a transmission path, they are

assigned, in sequence, PSN on this path. As in SCTP [1],

LS-SCTP receiver recognizes fragmented data chunks, by

examining the flags in the data chunks header, and queue the

fragmented data chunks for re-assembly. Once the user

message is reassembled, LS-SCTP passes the re-assembled

user message to the message stream for possible reordering

and final dispatching.

4.6. Backward compatibility of LS-SCTP

To insure backward compatibility, LS-SCTP uses a

similar technique to that used for supporting Explicit

Congest Notification (ECN) [24]. During the association

initiation both end points have to exchange a Load-Sharing-

Supported parameter, in order to start using LS-SCTP over

the association. If any of the end points is not load sharing

capable or is load sharing capable but not willing to use load

sharing over the new association, in order to conserve the

battery power for example, it does not include this

parameter. In this case, standard SCTP is used over the

new association.

5. Performance study

In order to examine the performance of LS-SCTP, we

extended our SCTP implementation, in OPNET network

simulation software [25]. In our simulation, we used the

network topology shown in Fig. 11. We assume that an

SCTP association is already initiated between the two hosts,

and the association is unidirectional, which means that data

chunks will only be sent from the host A (sender) to host B

(receiver). In addition, we use only one stream within the

association.

Nodes 1-N are used to configure the characteristics of the

transmission paths in terms of bandwidth, loss rate, delay

and delay jitter. In addition, the nodes can be configured to

represent a short term or a long term path failures, as well as

intermittent failures. As we need to examine the perform-

ance of LS-SCTP under diverse paths characteristics, and in

order to have full control on the configuration of the paths

during our performance study, we assumed that the paths do

not share a common bottleneck. Techniques to detect and

deal with shared bottlenecks are described in Section 4.3.

The application packet size is set to 1 Kbytes. We set the

application packet inter-arrival time to insure that the

application will always have packets for transmission.

During all our simulations, the application starts generating

packets after 0.1 s from starting the simulation.

The association buffer sizes (both sender and receiver)

were set according to Eq. (1). Unless specified otherwise,

the bandwidth of all the paths between host A and host B

were set to 1.5 Mbps, with RTT ¼ 100 ms.

In our performance study we used the association

throughput as a performance metrics, which is defined as

the number of bytes delivered to the receiver’s application

layer per second.

Fig. 11. Network model for the simulation study.

A. Abd El Al et al. / Computer Communications 27 (2004) 1012–10241020

Specific questions we looked at in our performance

study:

(1) Does LS-SCTP scale well with the number of

transmission paths?

(2) What is the effect of packet losses on LS-SCTP

throughput?

(3) How does LS-SCTP perform with bandwidth vari-

ation?

(4) How does LS-SCTP react to short term and long term

path failures?

5.1. Scalability with the number of transmission paths

We examined the scalability of LS-SCTP with increasing

the number of transmission paths. As far as we are

examining the maximum throughput that can be achieved

by LS-SCTP, we assumed that there are no losses on the

paths. Fig. 12 shows the LS-SCTP association throughput as

we increase the number of active paths within the

association. It can be observed that the performance of

LS-SCTP scales well with increasing the number of active

paths, and it is able to aggregate their bandwidth efficiently.

5.2. Effect of packet losses

In this experiment, we examined the performance of LS-

SCTP under different packet loss rates. We assumed that the

association includes two paths, namely path 1 and path 2.

We configured node 1, on path 1, to drop packets randomly

in the range between 0.001 and 1%, while we assumed that

there is no losses on path 2. Fig. 13 shows the total

throughput of SCTP and LS-SCTP under different packet

loss rates. Because of the randomization in this experiment,

each point in the graph represents the average of 10 samples

with different seeds. It can be shown that the although the

paths that are used for load sharing have different packet

loss characteristics, LS-SCTP still achieves higher throughput

than SCTP, due to the packet retransmission technique used

in LS-SCTP.

5.3. Effect of bandwidth fluctuation

In this experiment, we studied the effect of bandwidth

fluctuation on LS-SCTP performance. We used two paths

between host A and host B, namely path 1 and path 2. We

represented the bandwidth fluctuation on path 1, by using a

square-wave background traffic with amplitude 1 Mbps, and

period t ¼ 40 s. While we assumed that there is no

background traffic on path 2. We run the simulation for 120 s.

Fig. 14 shows the association throughput. It can be seen

that LS-SCTP is able to adapt with the bandwidth

fluctuation on the transmission paths, as the sender is

splitting the load on the paths based on an estimate of their

bandwidths. Also LS-SCTP is able to utilize the available

bandwidth between the communicating endpoints. The

difference between the association throughput and the

available bandwidth is mostly due to the overhead from

various protocol levels.

5.4. Short term path failure

We examined the effect of short term path failure on the

LS-SCTP. By short term path failure we mean that the path

will recover before it is marked as inactive by the sender, i.e.

before the number of consecutive path timeouts exceed

Path.Max.Retrans, which is set to 5. We assumed that there

are two active paths within the association, path 1 and path 2.

Path 1 failed for 10 s, after 5 s from initiating the

association. During our simulation, we compared two

techniques for handling timed-out paths. The first technique,

which we refer to as SCTP Time-out Handling Technique, is

Fig. 12. Association throughput versus the number of transmission paths.

Fig. 13. Total throughput versus packet loss rate.

Fig. 14. Effect of bandwidth fluctuation on the association throughput.

A. Abd El Al et al. / Computer Communications 27 (2004) 1012–1024 1021

similar to that used in SCTP, where the timed-out data

chunks are retransmitted on an alternative path, and a new

data chunk is used for probing the bandwidth of the timed-

out path. The second technique, which we refer to as LS-

SCTP Time-out Handling Technique, is the technique we

proposed in Section 4.3, where the timed-out data chunks

are retransmitted on alternative path, other than the one they

already timed-out on, and a copy of one of the retransmitted

data chunks is used for probing the timed-out path. After the

receiver sends a LS-SACK to acknowledge the data chunk

copy, the sender starts to use the path again for transmission

of data chunks.

Fig. 15, shows the received ASNs progression, under

the SCTP time-out handling technique. As can be seen

that the whole association stalled, for around 15 s, after

path 1 timed-out. The reason behind this behavior, that

after the first time-out of path 1, the sender retransmitted

all the timed-out data chunks on path 2, then started to

probe path 1 with a new data chunk, ASN ¼ 2944. At the

same time, the sender continued to send the data chunks

following ASN ¼ 2944 on path 2. This caused the

receiver association buffer to fill up, as it is waiting for

ASN ¼ 2944, preventing the sender from sending more

data chunks. This caused the whole association to stall,

until ASN ¼ 2944 is timed-out and retransmitted on

path 2, allowing the receiver to deliver all the data

chunks in the association buffer to the application. At this

time, the sender resumed the transmission again. This

cycle repeated for 3 times. Also, as we can notice from

the figure, that even after path 1 is recovered at t ¼ 15 s,

the association continued to stall, until path 1 is timed-out

again at t ¼ 20 s. The reason behind this that path 1 RTO

increased exponentially after each time-out, which led the

association to stall for exponentially increasing periods of

time.

Fig. 16 shows the association throughput, with SCTP

time-out handling technique. As can be seen that the

association throughput dropped to zero most of the interval

between t ¼ 5 to t ¼ 20:

We repeated the simulation using LS-SCTP time-out

handling technique. Received ASN progression is shown

is Fig. 17. As can been seen, that using a copy of

a retransmitted packet to probe path 1 cwnd, led

the association to resume using path 2. This had the effect

of reducing the association throughput, as shown in Fig. 18,

but with minimum interruption to the association progress.

After the recovery of path 1, the sender started to utilize it

for transmission. This consequently increased the associ-

ation throughput. The reduction of the association through-

put after path 1 failure, occurred for a duration

approximately equal path 1 RTO, before the sender stopped

considering path 1 for transmitting new data chunks. This

throttling interval can be decreased by increasing the

receiver association buffer, as this will allow the

receiver buffer to absorb more sender’s transmission before

filling up.

5.5. Long term path failure

We examined the effect of long term path failure on

the LS-SCTP. With long term path failure, we mean that

the path will recover after the sender’s Path Monitor

Fig. 15. Received ASNs progression under SCTP time-out handling

technique.

Fig. 16. Association throughput under SCTP time-out handling technique.

Fig. 17. Received ASNs progression under LS-SCTP timeout handling

technique.

Fig. 18. Association throughput under LS-SCTP time-out handling

technique.

A. Abd El Al et al. / Computer Communications 27 (2004) 1012–10241022

marks the path as inactive, i.e. after the number of

consecutive path time-outs exceed Path.Max.Retrans.

Again we assumed that there are two active paths within

the association, path 1 and path 2, and path 1 failed for

40 s, after 5 s from initiating the association. The failure

duration was selected to insure that the sender’s Path

Monitor would set path 1 as inactive early enough before

its recovery. After path 1 is set inactive, the sender kept

monitoring the path using Heartbeat control chunks.

During our simulation we set the HB.Interval ¼ 1 s,

so as to increase the probing rate, as discussed in

Section 4.4.

As shown from Figs. 19 and 20, after the failure of path 1

the sender continued to use path 2 for transmission of new

data chunks. The data chunk copy on path 1 continued to

time-out, until path 1 is set as inactive by the Path Monitor at

t ¼ 33 s. The LS-SCTP sender stopped probing path 1

cwnd, but at the same time it continued to monitor the status

of path 1 using the Heartbeats chunks. After path 1 recovery

at t ¼ 50 s, the first Heartbeat sent by the sender, at t ¼ 52 s,

is acknowledged by a Heartbeat-Ack. Since then, the

sender’s Path Monitor set path 1 as active, and continued

to use it for data chunks transmission.

6. Conclusions and future research

In this paper, we propose an extension for SCTP, LS-

SCTP, which aggregates the available bandwidth on the

paths between the sender and receiver. We first showed

that SCTP in its current form is not suitable for load

sharing. Then, we suggested remedies for SCTP to make

it load sharing capable. We proposed separating the

association flow control and congestion control. The

congestion control is performed per path while the flow

control is performed per association. Also we proposed

modifying the sender to control the distribution of data on

the available paths based on an estimate of the bandwidth

of each path. In addition, we presented a technique that

allows the sender to react to path failure and path quality

deterioration without stalling the whole association. LS-

SCTP performance study shows that it is scalable with the

number of transmission path. Also it shows that LS-SCTP

is able to deal efficiently with short term as well as long

term path failures. We believe that our proposed

bandwidth aggregation mechanism is extremely beneficial

for networks with limited bandwidth and high loss rates,

especially with the increase of multi-homed devices that

can be simultaneously connected to different networks

through different interfaces.

Work is in progress in many directions. We are

investigating techniques for achieving end-to-end service

differentiation by mapping different streams within the

association, to different paths. We are studying the

different QoS parameters for the association streams, as

well as examining techniques for accurate monitoring to

the congestion status of transmission paths. This will

allow the sender endpoint to perform accurate mapping

between the streams and the paths, in order to fulfill the

streams QoS requirements. In addition, we are extending

the SCTP Linux implementation with our proposal for

load sharing, in order to further examine the perform-

ance of LS-SCTP in wire line as well as in wireless

networks.

7. Disclaimer

The views and conclusions in this document are those of

the authors and should not be interpreted as representing the

official policies, either expressed or implied, of the Army

Research laboratory or the US Government.

References

[1] R. Stewart, Q. Xie, et al., Stream Control Transmission Protocol,

IETF (2000) 2960 Request for Comments.

[2] R. Katz, G. Gibson, D. Pattersan, Disk system architecture for high

performance computing, Proceedings of the IEEE 77 (12) (1989).

[3] C. Brenden, S. Traw, M. Smith, Striping Within the Network

Subsystem, IEEE Network 9 (4) (1995) 22–32.

[4] Computer Staff, Gigabit network testbeds, IEEE Computer 23 (9)

(1990) 77–80.

[5] J. Duncanson, Inverse Multiplexing, IEEE Communications Maga-

zine 32 (4) (1994) 34–41.

[6] A. Snoeren, Adaptive inverse multiplexing for wide-area wireless

networks, Proceedings of the IEEE GLOBECOM’99 (1995).

[7] L. Magalhaes, R. Kravets, Transport level mechanisms for bandwidth

aggregation on mobile hosts, Proceedings of the IEEE ICNP’01 (2001).

Fig. 19. Received ASNs progression.

Fig. 20. Association throughput.

A. Abd El Al et al. / Computer Communications 27 (2004) 1012–1024 1023

[8] J. Lee, D. Gunter, et al., Applied techniques for high bandwidth data

transfers across wide area networks, Proceedings of the Computers in

High Energy Physics CHEP’01 (2001).

[9] M. Allman, H. Kruse, S. Ostermann, An application-level solution to

TCP’s satellite inefficiencies, Proceedings of the Workshop on

Satellite-Based Information Services WOSBIS’96 (1996).

[10] H. Sivakumar, S. Bailey, R. Grossman, PSockets: the case for

application-level network striping for data intensive applications

using high speed wide area networks, Proceedings of the IEEE

Supercomputing SC’00 (2000).

[11] T. Hacker, B. Athey, The end-to-end performance effects of parallel

tcp sockets on a lossy wide-area network, Proceedings of the IEEE

IPDPS’02 (2002).

[12] L. Ong, I. Rytina, et al., Framework Architecture for Signaling

Transport, IETF (1999) 2719 Request for Comments.

[13] H. Elsayed, A. Abd El Al, T. Saadawi, M. Lee, Synchronization

algorithm for SCTP network, Proceedings of the International

Workshop on Multimedia Network Systems and Applications

MNSA’03 (2003).

[14] R. Brennan, T. Curran, SCTP congestion control: initial simulation

studies, Proceedings of the International Teletraffic Congress CFP’01

(2001).

[15] M. Allman, V. Paxson, W. Stevens, TCP Congestion control, IETF

(1999) 2581 Request for Comments.

[16] H. Balakrishnan, H. Rahul, S. Seshan, An integrated congestion

management architecture for Internet host, Proceedings of the ACM/

SIGCOMM’99 (1999).

[17] Balk, M. Sigler, M. Gerla, M. Sanadidi, Investigation of MPEG4

Video Streaming over SCTP, Sixth World Multiconference on

Systemics, Cybernetics, and Informatics (SCI 2002) July 14–18,

Orlando, FL, USA (2002).

[18] J. Iyengar, A. Caro, et al., SCTP Congestion Window Overgrowth

During Changeover, Proceedings of the Systemics, Cybernetics and

Informatics Conference SCI’02 (2002).

[19] E. Blanton, M. Allman, On making TCP more robust to packet

reordering, ACM Computer Communication Review (2002).

[20] M. Zhang, B. Karp, S. Floyd, L. Peterson, RR-TCP: a reordering

robust TCP with DSACK, Technical Report International Computer

Science Institute ICSI’02 (2002).

[21] Abd El Al, T. Saadawi, M. Lee, Load Sharing in stream control

transmission protocol, IETF draft, draft-ahmed-lssctp-00.txt, 5/03.

[22] J. Semke, J. Mahdavi, Automatic TCP buffer tuning, computer

communication review, ACM/SIGCOMM 28 (4) (1998).

[23] D. Rubenstein, J. Kurose, D. Towsley, Detecting shared congestion

flows via end-to-end measurements, Proceedings of the ACM/

SIGMETRICS’00 (2000).

[24] K. Ramakrishnan, S. Floyd, A proposal to add explicit congestion

notification (ECN) to IP, IETF (1999) 2481 Request for Comments.

[25] Opnet Modular, http://www.opnet.com.

A. Abd El Al et al. / Computer Communications 27 (2004) 1012–10241024

http://www.opnet.com

	LS-SCTP: a bandwidth aggregation technique for stream control transmission protocol
	Introduction
	Related work
	SCTP overview
	LS-SCTP design
	Is SCTP suitable for load sharing?
	Architectural overview of LS-SCTP
	Path assignment module
	Path monitoring
	Fragmentation and reassembly
	Backward compatibility of LS-SCTP

	Performance study
	Scalability with the number of transmission paths
	Effect of packet losses
	Effect of bandwidth fluctuation
	Short term path failure
	Long term path failure

	Conclusions and future research
	Disclaimer
	References

