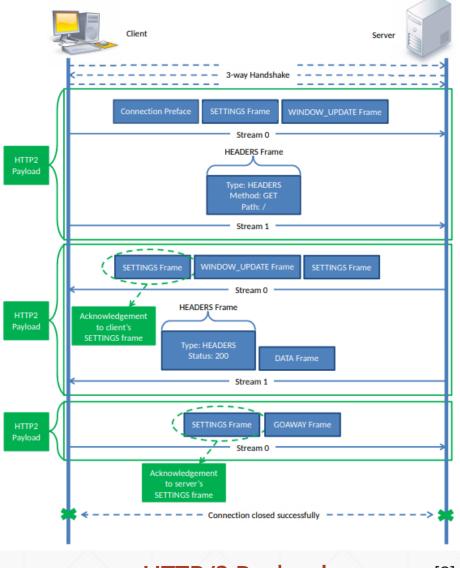
A Study on LR-DDoS and the Enhancement of General-Purpose Python Socket Module to Provide Defense Mechanisms for Multi-Thread Servers

OUTLINE

- LR-DDoS
- Defense Mechanism on Web Severs
- Original Python Socket Server
- Proposed Solution

High-Rate vs. Low-Rate

High-Rate


- 1. Volume Based (Bandwidth)
- 2. Packet Burst
- 3. Network Congestion

Low-Rate

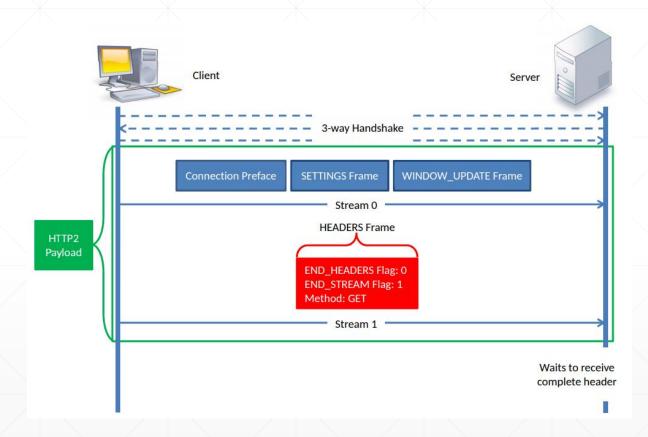
- 1. Low Bandwidth Needed
- 2. Hard to Detect (Behave like a Normal User)

LR-DDoS on HTTP (LowRate-DDoS)

HTTP/2 Payload

[2]

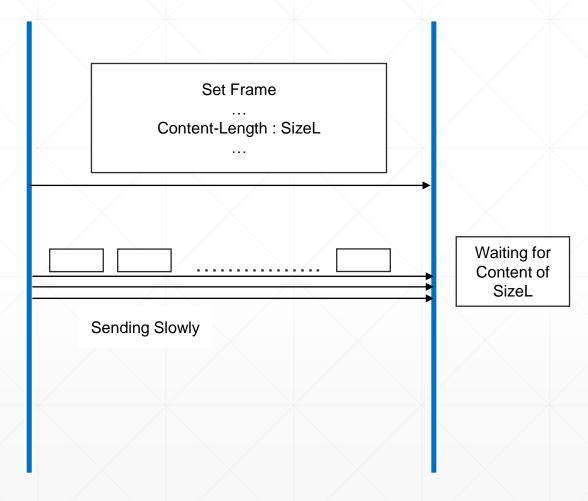
LR-DDoS (Example 1)


Slow Header

Malicious client send HEADER frame with these flags.

END_HEADERS: reset(0)

END_STREAM : set(1)


Implies there are more frames coming

LR-DDoS (Example 2)

Slow Body

Send a respectively long request and send content slowly to let Server waiting for complete.

Server

Client

Defense Mechanism Apache II

Apache有多個Module可供開啟,每個都只需下載並啟用即可。

mod_reqtimeout:限制Headers與Body的傳送時限。

mod_qos: 當Server較繁忙時,會關閉HTTP KeepAlive。

此外也會限制單個IP的同時連線數和最低的資料傳送速率。

mod_antiloris: 限制單個IP最多同時在等候資料的連線數。

Defense Mechanism Nginx

Nginx Server 內擁有可以自行調整的參數,用來避免此類的攻擊。

large_client_header_size: Max Header Length •

client_max_body_size : Max POST content Length •

client_header_timeoutclient_body_timeout: Timeout for Header •: Timeout for Content •

send_timeout : Timeout for each frame •

CPS : Limit to connections per second. If the limit

is exceeded, sleep for few seconds. •

Original Python Socket Sever

Common Problems

Too Many Open Files
Memory Waste
CPU Waste

```
import socket
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sock.bind(('127.0.0.1', 8080))
sock.listen(1)
accept, _ = sock.accept()
```

Common Server with socket python module

Proposed Solution

LIMIT_bps : Minimum Data Rate after first byte.

LIMIT_per_source : Simultaneous open connection.

LIMIT_cps : Maximum accept connections per second.

Receiving:

Wait the first byte arrive before timeout.

After that, calculate minimum Data Rate LIMIT_bps (Bytes per second).

If Data Rate slower than LIMIT_bps, then drop connection.

Accept Connection:

If current connections from source is more than LIMIT_per_source, accept connection for only "few" seconds then drop.

Only accept amount of connections per second.

DEMO

Reference

- [1] Hoque, Nazrul & Bhattacharyya, Dhruba K & Kalita, Jugal. (2016). FFSc: A novel measure for low-rate and high-rate DDoS attack detection using multivariate data analysis. Security and Communication Networks. 9. 10.1002/sec.1460.
- [2] Tripathi, Nikhil & Hubballi, Neminath. (2017). Slow Rate Denial of Service Attacks Against HTTP/2 and Detection. Computers & Security. 72. 10.1016/j.cose.2017.09.009.