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to Provide Defense Mechanisms for Multi-Thread Servers
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OUTLINE

« LR-DDo0S
 Defense Mechanism on Web Severs

= Original Python Socket Server
* Proposed Solution
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LR-DDoS on HTTP
(LowRate-DDoS)
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LR-DDoS (Example 1)

Slow Header

Malicious client send HEADER frame with

these flags.
END HEADERS : reset(0)
END_STREAM : set(1)

Implies there are more frames coming
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HTTP2
Payload

Server

Connection Preface SETTINGS Frame WINDOW_UPDATE Frame

Stream O

HEADERS Frame
A

END_HEADERS Flag: 0

END_STREAM Flag: 1
Method: GET

Stream 1

Waits to receive
complete header




LR-DDoS (Example 2)
Slow Body

Send a respectively long request and send

content slowly to let Server waiting for complete.
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Content-Length : SizelL
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Defense Mechanism : —
Apache |l APACH

HTTP SERVER PROJECT
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Defense Mechanism
Nginx

Nginx Server A#EHE T B1TRZENS B - FAGE R ULAERYINE -

large _client_header_size : Max Header Length -

client_max_body size . Max POST content Length -
client_header_timeout . Timeout for Header -
client_body_timeout . Timeout for Content -

send_timeout . Timeout for each frame -

CPS . Limit to connections per second. If the limit

IS exceeded, sleep for few seconds. °




Original Python Socket Sever

Common Problems

Too Many Open Files
Memory Waste
CPU Waste

import socket

sock = socket.socket(socket AF INET, socket.30CK_STREAM)

sock.bind(( '127.0.0.1", BOR0))
sock.listen(1)

accept,

_ = sock.accept()

Common Server with socket python module
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LIMIT_bps : Minimum Data Rate after first byte.
LIMIT _per_source : Simultaneous open connection.

Proposed Solution LIMIT_cps : Maximum accept connections per second.

Receiving:
Wait the first byte arrive before timeout.
After that, calculate minimum Data Rate LIMIT_bps (Bytes per second).
If Data Rate slower than LIMIT _bps, then drop connection.

Accept Connection:

If current connections from source is more than LIMIT_per_source,
accept connection for only “few” seconds then drop.

Only accept amount of connections per second.
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