A StUdy on LR-DDoS and
the Enhancement of General-Purpose Python Socket Module
to Provide Defense Mechanisms for Multi-Thread Servers

By 106321035 B LIE

OUTLINE

« LR-DDo0S
 Defense Mechanism on Web Severs

= Original Python Socket Server
* Proposed Solution

High-Rate vs. Low-Rate

High-Rate

18

x 10"

|
1
1. Volume Based (Bandwidth) :
14
|
2. Packet Burst - !
. 1
3. Network Congestion 3 1o =)
g ’ — m,i
¢ |
Low-Rate ‘ {
2 - 1
1. Low Bandwidth Needed :
0 S0 100 150 200 2% e

2. Hard to Detect (Behave like a Normal User) RS
(a) Packet rate

[1]

LR-DDoS on HTTP
(LowRate-DDoS)

HTTP2
Payload

Connection Preface

Stream 0
HEADERS Frame

Type: HEADERS
Method: GET
Path: /

Stream 1

-

Stream 0

HEADERS Frame

SETTINGS frame
Type: HEADERS

Siat

SETTINGS Frame
Frame

————

HTTP/2 Payload

LR-DDoS (Example 1)

Slow Header

Malicious client send HEADER frame with

these flags.
END HEADERS : reset(0)
END_STREAM : set(1)

Implies there are more frames coming

_l. E Client

—

HTTP2
Payload

Server

Connection Preface SETTINGS Frame WINDOW_UPDATE Frame

Stream O

HEADERS Frame
A

END_HEADERS Flag: 0

END_STREAM Flag: 1
Method: GET

Stream 1

Waits to receive
complete header

LR-DDoS (Example 2)
Slow Body

Send a respectively long request and send

content slowly to let Server waiting for complete.

Client

Set Frame

Content-Length : SizelL

Server

Waiting for
Content of

SizeL

Sending Slowly

Defense Mechanism : —
Apache |l APACH

HTTP SERVER PROJECT

ApacheBZEModule o] FR - BEEEFE MEILRLAEDI O] -

mod_reqtimeout : PEHIHeadersEEBody I EERSIR -
mod_qgos : = ServerBRE I - SEAFHTTP KeepAlive -

LM & BRI E & IPH B R 2R B R B B R B IR E R -
mod_antiloris : PRHIEEIPEZEIRESIEERIERE -

Defense Mechanism
Nginx

Nginx Server A#EHE T B1TRZENS B - FAGE R ULAERYINE -

large _client_header_size : Max Header Length -

client_max_body size . Max POST content Length -
client_header_timeout . Timeout for Header -
client_body_timeout . Timeout for Content -

send_timeout . Timeout for each frame -

CPS . Limit to connections per second. If the limit

IS exceeded, sleep for few seconds. °

Original Python Socket Sever

Common Problems

Too Many Open Files
Memory Waste
CPU Waste

import socket

sock = socket.socket(socket AF INET, socket.30CK_STREAM)

sock.bind(('127.0.0.1", BOR0))
sock.listen(1)

accept,

_ = sock.accept()

Common Server with socket python module

10

LIMIT_bps : Minimum Data Rate after first byte.
LIMIT _per_source : Simultaneous open connection.

Proposed Solution LIMIT_cps : Maximum accept connections per second.

Receiving:
Wait the first byte arrive before timeout.
After that, calculate minimum Data Rate LIMIT_bps (Bytes per second).
If Data Rate slower than LIMIT _bps, then drop connection.

Accept Connection:

If current connections from source is more than LIMIT_per_source,
accept connection for only “few” seconds then drop.

Only accept amount of connections per second.

11

DEMO

Reference

[1] Hoque, Nazrul & Bhattacharyya, Dhruba K & Kalita, Jugal. (2016). FFSc: A novel
measure for low-rate and high-rate DDoS attack detection using multivariate data
analysis. Security and Communication Networks. 9. 10.1002/sec.1460.

[2] Tripathi, Nikhil & Hubballi, Neminath. (2017). Slow Rate Denial of Service Attacks Against HTTP/2 and Detection.
Computers & Security. 72. 10.1016/j.cose.2017.09.0009.

13

